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Preface to the second edition

This second, long (over)due, edition presents a major extension and restructur-
ing of the initial two volumes edition, based on objective as well as subjective
elements.

The first group of arguments is related to numerous requests we have received over
the years after the initial publication, for enhancing the didactic structure of the two
volumes in order to respond to the development of CFD courses, starting often now
at an advanced undergraduate level.

We decided therefore to adapt the first volume, which was oriented at the fundamen-
tals of numerical discretizations, toward a more self-contained and student-oriented
first course material for an introduction to CFD. This has led to the following changes
in this second edition:

e We have focused on a presentation of the essential components of a simulation
system, at an introductory level to CFD, having in mind students who come in
contact with the world of CFD for the first time. The objective being to make the
student aware of the main steps required by setting up a numerical simulation,
and the various implications as well as the variety of options available. This
will cover Chapters 1-10, while Chapters 11 and 12 are dedicated to the first
applications of the general methodology to inviscid simple flows in Chapter 11
and to 2D incompressible, viscous flows in Chapter 12.

e Several chapters are subdivided into two parts: an introductory level written for
a first introductory course to CFD and a second, more advanced part, which is
more suitable for a graduate and more advanced CFD course. We hope that by
putting together the introductory presentation and the more advanced topics, the
student will be stimulated by the first approach and his/her curiosity for the more
advanced level, which is closer to the practical world of CFD, will be aroused.
We also hope by this way to avoid frightening off the student who would be
totally new to CFD, by a too ‘brutal’ contact with an approach that might appear
as too abstract and mathematical.

e Each chapter is introduced by a section describing the ‘Objectives and guidelines
to this Chapter’, and terminates by a section on ‘Conclusions and main topics
to remember’, allowing the instructor or the student to establish his or her guide
through the selected source material.

e The chapter on finite differences has been extended with additional considera-
tions given to discretizations formulas on non-uniform grids.

e The chapters on finite element and finite volume methods have been merged,
shifting the finite element description to the ‘advanced’ level, into Chapter 5 of
this volume.

e A new Chapter 6 has been added devoted to an overview of various grids used
in practice, including some recommendations related to grid quality.

XV



xvi

Preface

Chapters 7 and 8 of the first edition, devoted to the analysis of numerical schemes
for consistency and stability have been merged and simplified, forming the new
Chapter 7.

Chapter 9 of the first edition has been largely reorganized, simplified and
extended with new material related to general scheme properties, in particu-
lar the extremely important concept of monotonicity and the methodologies
required to suppress numerical oscillations with higher order schemes, with the
introduction of limiters. This is found in Chapter 8 of this volume.

The former Chapters 10 and 11 have been merged in the new Chapter 9, devoted
to the time integration schemes and to the general methodologies resulting from
the combination of a selected space discretization with a separate time integration
method.

Parts of the second volume have been transferred to the first volume; in partic-
ular sections on potential flows (presented in Chapter 11) and two-dimensional
viscous flows in Chapter 12. This should allow the student already to come in
contact, at this introductory CFD level, with initial applications of fluid flow
simulations.

The number of problems has been increased and complete solution manuals will
be made available to the instructors. Also a computer program for the numerical
solutions of simple 1D convection and convection—diffusion equations, with a
large variety of schemes and test cases can be made available to the instructors,
for use in classes and exercises sessions. The objective of this option is to provide
a tool allowing the students to develop their own ‘feeling’ and experience with
various schemes, including assessment of the different types and level of errors
generated by the combination of schemes and test cases. Many of the figures in
the two volumes have been generated with these programs.

The second group of elements is connected to the considerable evolution and exten-

sion of Computational Fluid Dynamics (CFD) since the first publication of these
books. CFD is now an integral part of any fluid-related research and industrial appli-
cation, and is progressively reaching a mature stage. Its evolution, since the initial
publication of this book, has been marked by significant advancements, which we
feel have to be covered, at least partly, in order to provide the reader with a reliable
and up-to-date introduction and account of modern CFD. This relates in particular to:

Major developments of schemes and codes based on unstructured grids, which
are today the ‘standard’, particularly with most of the commercial CFD packages,
as unstructured codes take advantage of the availability of nearly automatic grid
generation tools for complex geometries.

Advances in high-resolution algorithms, which have provided a deep insight in
the general properties of numerical schemes, leading to a unified and elegant
approach, where concepts of accuracy, stability, monotonicity can be defined
and applied to any type of equation.

Major developments in turbulence modeling, including Direct Numerical
Simulations (DNS) and Large Eddy Simulations (LES).

Applications of full 3D Navier—Stokes simulations to an extreme variety of com-
plex industrial, environmental, bio-medical and other disciplines, where fluids



Preface xvii

play a role in their properties and evolution. This has led to a considerable overall
experience accumulated over the last decade, on schemes and models.

e The awareness of the importance of verification and validation of CFD codes and
the development of related methodologies. This has given rise to the definition
and evaluation of families of test cases including the related quality assessment
issues.

e The wide availability of commercial CFD codes, which are increasingly being
used as teaching tools, to support the understanding of fluid mechanics and/or
to generate simple flow simulations. This puts a strong emphasis on the need for
educating students in the use of codes and providing them with an awareness
of possible inaccuracies, sources of errors, grid and modeling effects and, more
generally, with some global Best Practice Guidelines.

Many of these topics will be found in the second edition of Volume II.

I have benefited from the spontaneous input from many colleagues and students,
who have been kind enough to send me notices about misprints in text and in formulas,
helping hereby in improving the quality of the books and correcting errors. [ am very
grateful to all of them.

I also have to thank many of my students and researchers, who have contributed
at various levels; in particular: Dr. Zhu Zong—Wen for the many problem solutions;
Cristian Dinescu for various corrections. Benoit Tartinville and Dr. Sergey Smirnov
have contributed largely to the calculations and derivations in Chapters 11 and 12.

Brussels, December 2006



Nomenclature

a convection velocity or wave speed

A Jacobian of flux function

c speed of sound

¢ specific heat at constant pressure

Cy specific heat at constant volume

D first derivative operator

e internal energy per unit mass

e vector (column matrix) of solution errors
éx, ey, & unit vectors along the x,y, z directions

E total energy per unit volume

E finite difference displacement (shift) operator
f flux function

j’e external force vector

F (f,g,h) flux vector with components f, g,/

gravity acceleration

amplification factor/matrix

enthalpy per unit mass

total enthalpy

rothalpy

Jacobian

coefficient of thermal conductivity
wave number

Mach number

normal distance

normal vector

pressure

convergence or conditioning operator
Prandtl number

non homogeneous term

heat source

source term; matrix of non homogeneous terms
gas constant per unit mass

residual of iterative scheme

Reynolds number

entropy per unit mass

space discretization operator

surface vector

time

temperature

dependent variable

vector (column matrix) of dependent variables
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Xix

Subscripts

U vector of conservative variables; velocity

v (u,v,w) velocity vector with components u, v, w

V eigenvectors of space discretization matrix

w relative velocity

w weight function

X, ¥,z cartesian coordinates

z amplification factor of time integration scheme

o diffusivity coefficient

B dimensionless diffusion coefficient 8 = aAt/Ax, also called Von
Neumann number

y specific heat ratio

r circulation; boundary of domain

8 central-difference operator

5t,8 forward and backward difference operators

A Laplace operator

At time step

AU variation of solution U between levels n+ 1 and n

AXx, Ay spatial mesh size in x and y directions

DE &S < A DdDIVrxT T >Ja¢<bw1§>é:g>m

s o

— =
— —-

error of numerical solution

turbulence dissipation rate

dissipation or diffusion error

dispersion error

vorticity vector

parameter controlling type of difference scheme
wave-number vector; wave propagation direction
eigenvalue of amplification matrix

coefficient of dynamic viscosity

averaging difference operator

real part of amplification matrix

imaginary part of amplification matrix

density; spectral radius

Courant number

shear stress tensor

stress tensor
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Introduction: An Initial Guide to CFD
and to this Volume

Computational Fluid Dynamics, known today as CFD, is defined as the set of
methodologies that enable the computer to provide us with a numerical simulation of
fluid flows.

We use the word ‘simulation’ to indicate that we use the computer to solve numer-
ically the laws that govern the movement of fluids, in or around a material system,
where its geometry is also modeled on the computer. Hence, the whole system is
transformed into a ‘virtual’ environment or virfual product. This can be opposed to
an experimental investigation, characterized by a material model or prototype of the
system, such as an aircraft or car model in a wind tunnel, or when measuring the flow
properties in a prototype of an engine.

This terminology is also referring to the fact that we can visualize the whole system
and its behavior, through computer visualization tools, with amazing levels of realism,
as you certainly have experienced through the powerful computer games and/or movie
animations, that provide a fascinating level of high-fidelity rendering. Hence the
complete system, such as a car, an airplane, a block of buildings, etc. can be ‘seen’
on a computer, before any part is ever constructed.

1.1 THE POSITION OF CFD IN THE WORLD OF VIRTUAL PROTOTYPING

To situate the role and importance of CFD in our contemporary technological world, it
might be of interest to take you down the road to the global world of Computer-Assisted
Engineering or CAE. CAE refers to the ensemble of simulation tools that support
the work of the engineer between the initial design phase and the final definition of
the manufacturing process. The industrial production process is indeed subjected to
an accelerated evolution toward the computerization of the whole production cycle,
using various software tools.

The most important of them are: Computer-Assisted Design (CAD), Computer-
Assisted Engineering (CAE) and Computer-Assisted Manufacturing (CAM) soft-
ware. The CAD/CAE/CAM software systems form the basis for the different phases
of the virtual prototyping environment as shown in Figure I.1.1.

This chart presents the different components of a computer-oriented environment,
as used in industry to create, or modify toward better properties, a product. This
product can be a single component such as a cooling jacket in a car engine, formed
by a certain number of circular curved pipes, down to a complete car. In all cases the
succession of steps and the related software tools are used in very much similar ways,
the difference being the degree of complexity to which these tools are applied.
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Figure 1.1.1  The structure of the virtual prototyping environment.

1.1.1 The Definition Phase

The first step in the creation of the product is the definition phase, which covers
the specification and geometrical definition. It is based on CAD software, which
allows creating and defining the geometry of the system, in all its details. Typically,
large industries can employ up to thousands of designers, working full time on CAD
software. Their day-to-day task is to build the geometrical model on the computer
screen, in interaction with the engineers of the simulation and analysis departments.

This CAD definition of the geometry is the required and unavoidable input to the
CFD simulation task.

Figure 1.1.2 shows several examples of CAD definitions of different models, for
which we will see later results of CFD simulations. These examples cover a very wide
range of applications, industrial, environmental and bio-medical.
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Figure 1.1.2a, is connected to environmental studies of wind effects around a block
of buildings, with the main objective to improve the wind comfort of the people
walking close to the main buildings. To analyze the problem we will have to look at
the wind distribution at around 1.5 m above the ground and try to keep these wind
velocities below a range of 0.5—1.0 m/s. Figure I.1.2b shows a CAD definition of an
aircraft, in order to set up a CFD study of the flow around it.

Figure 1.1.2c is a multistage axial compressor, one of the components of a gas
turbine engine. The objective here is to calculate the 3D flow in all the blade rows,
rotors and stators of this 3.5 stage compressor, simultaneously in order to predict the
performance, identify flow regions generating higher losses and subsequently modify
the blading in order to reduce or minimize these loss regions.

Figure 1.1.2d, from Van Ertbruggen et al. (2005), is a section of several branches of
the lung and the CFD analysis has as objective to determine the airflow configuration
during inspiration and to determine the path of inhaled aerosols, typical of medical
sprays, in function of the size of the particles. It is of considerable importance for
the medical and pharmaceutical sector to make sure that the inhaled medication will
penetrate deep enough in the lungs as to provide the maximal healing effect. Finally,
Figure I.1.2¢e and f'show, respectively, the complex liquid hydrogen pump of the VUL-
CAIN engine of the European launcher ARIANE 5 and an industrial valve system,
also used on the engines of the ARTANE 5 launcher. A CFD analysis is applied in
both cases to improve the operating characteristics of these components and define
appropriate geometrical changes.

1.1.2 The Simulation and Analysis Phase

The next phase is the simulation and analysis phase, which applies software tools
to calculate, on the computer, the physical behavior of the system. This is called
virtual prototyping. This phase is based on CAE software (eventually supported by
experimental tests at a later stage), with several sub-branches related to the different
physical effects that have to be modeled and simulated during the design process. The
most important of these are:

e Computational Solid Mechanics (CSM): The software tools able to evaluate
the mechanical stresses, deformations, vibrations of the solid parts of a system,
including fatigue and eventually life estimations. Generally, CSM software will
also contain modules for the thermal analysis of materials, including heat con-
duction, thermal stresses and thermal dilation effects. Advanced software tools
also exist for simulation of complex phenomena, such as crash, largely used in
the automotive sector and allowing considerable savings, when compared with
the cost of real crash experiments of cars being driven into walls.

e Computational Fluid Dynamics (CFD): It forms the subject of this book, and
as already mentioned designates the software tools that allow the analysis of
the fluid flow, including the thermal heat transfer and heat conduction effects
in the fluid and through the solid boundaries of the flow domain. For instance,
in the case of an aircraft engine, CFD software will be used to analyze the flow
in the multistage combination of rotating and fixed blade rows of the compressor
and turbine; predict their performance; analyze the combustor behavior, analyze
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(a) Computer (CAD) model of an urban (b) Computer model (CAD) of an airplane.
environment.
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(c) Computer model of a multistage (d) Computer model of a section of
compressor. pulmonary branches in the lung. From

Van Ertbruggen et al. (2005).

(e) Computer model of the liquid hydrogen (f) Computer model (CAD) of an industrial
pump of the VULCAIN engine of the valve system.
European launcher ARIANE 5.

Figure 1.1.2  Examples of computer (CAD) models to initiate the steps toward a
CFD simulation (for color image refer Plate I.1.2).
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Figure 1.1.3  Simulation of the interaction between the cooling flow and the main
external gas flow around a cooled turbine blade (for color image refer Plate 1.1.3).
Courtesy NUMECA Int. and KHI.

the thermal parts to optimize the cooling passages, cavities, labyrinths, seals and
similar sub-components. A growing number of sub-components are currently
being investigated with CFD tools; while the ultimate objective is to be able to
simulate the complete engine, from compressor entry to nozzle exit. An example
of a complex simulation of a cooled gas turbine blade is shown in Figure 1.1.3.
In this simulation, the external flow around the cooled turbine interacts with
the cooling flow ejected from the internal cooling passages. You can observe
the very complex three-dimensional flow, which is affected by the secondary
vortices, connected to the presence of the end-walls and by the tip clearance
flow at the upper blade end.

e Other simulation areas related to specialized physical phenomena are also cur-
rently applied and/or in development, such as Computational Aero-Acoustics
(CAA) and Computational electromagnetics (CEM). They play an important
role when effects such as reduction of noise or electromagnetic interferences
and signatures are important design objectives.

1.1.3 The Manufacturing Cycle Phase

In the last stage of the process, once the analysis has been considered satisfactory and
the design objectives reached, the manufacturing cycle can start. This phase will
attempt to simulate the fabrication process and verify if the shapes obtained from the
previous phases can be manufactured within acceptable tolerances. This is based on
the use of CAM software. This area is in strong development, as a growing number
of processes are being simulated on computer, such as Forging, Stamping, Molding,
Welding, for which appropriate software tools can indeed be found.

With the exploding growth of the computer hardware performance, both in terms
of memory and speed, industrial manufacturers expect to simulate, in the near future,
a growing number of design and fabrication processes on computer, prior to any pro-
totype construction. This concept of virtual product associated to virtual prototyping
is a major component of the technological progress, and it has already a considerable
impact in all areas of industry. This impact is prone to grow further and to become a
key-driving factor to all aspects of industrial analysis and design. In the automotive
industry for instance, the time required for the design and production of a new car
model has been reduced from 6 to 8 years in the 1970s to roughly 36 months in 2005,
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Figure 1.1.4  Impact of CFD on SNECMA fan performance, over a period of 30
years (for color image refer Plate 1.1.4). From Escuret et al. (1998).

with the announced objective of 24—18 months in the near future. A similar trend
is observed in aerospace, as well as in many other highly competitive branches of
industry.

1t is important therefore that you realize that the major driving force behind this
evolution is the wide use of computer simulations.

Coming back to the specific importance of CFD in this progress, the example of
the propulsion industry is very instructive. The application of CFD has considerably
improved the performance of the engines over the last 20 years, while reducing
simultaneously the design cycle time. Figure 1.1.4 shows the impact of the CFD
tools, over a period of nearly 30 years, on the performance improvements of aircraft
engines, as reported by the French engine manufacturer SNECMA. The evolution,
from the initial use of simple 2D potential flow models in the early 1970s to the current
applications of full 3D Navier—Stokes codes, has led to an overall gain in performance
close to 10 points in efficiency. This figure also provides an interesting indication as
to the period in time when the mentioned models were introduced in industry in
the main design process. You will notice that 3D inviscid Euler CFD models were
introduced around the mid-1980s, while the full 3D Navier—Stokes, turbulent CFD
models entered the main design cycle by end of the 1990s. This evolution is due to the
combination of growing computer hardware power and maturing CFD methodologies
and algorithms.

A very similar impact of CFD is reported by the Boeing Company; the following
statement by Boeing staff, Tinoco and Su (2004), is totally along the same line:

Effective use of Computational Fluid Dynamics (CFD) is a key ingredient in
successful design of modern commercial aircraft. The application of CFD to
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the design of commercial transport aircraft has revolutionized the process of
aerodynamic design.

Citing further from Boeing, you can find a very interesting account of 30 years of
history of CFD development at this Company in Johnson et al. (2003). We highly
recommend you to read this paper, as a fascinating account of how CFD evolved from
an initial tool to a strategic factor in the Company’s product development:

In 1973, an estimated 100 to 200 computer runs simulating flows about vehicles
were made at Boeing Commercial Airplanes, Seattle. In 2002, more than 20,000
CFD cases were run to completion. Moreover, these cases involved physics and
geometries of far greater complexity. Many factors were responsible for such a
dramatic increase: (1) CFD is now acknowledged to provide substantial value
and has created a paradigm shift in the vehicle design, analysis and support
processes; ... (5) computing power and affordability improved by three to four
orders of magnitude ...

Effective use of CFD is a key ingredient in the successful design of modern
commercial aircraft. The combined pressures of market competitiveness, dedica-
tion to the highest of safety standards and desire to remain a profitable business
enterprise all contribute to make intelligent, extensive and careful use of CFD a
major strategy for product development at Boeing. Experience to date at Boeing
Commercial Airplanes has shown that CFD has had its greatest effect in the
aerodynamic design of the high-speed cruise configuration of a transport air-
craft. The advances in computing technology over the years have allowed CFD
methods to affect the solution of problems of greater and greater relevance to
aircraft design, as illustrated in Figure 1.' Use of these methods allowed a more
thorough aerodynamic design earlier in the development process, permitting
greater concentration on operational and safety-related features.

The 777, being a new design, allowed designers substantial freedom to exploit
the advances in CFD and aerodynamics. High-speed cruise wing design and
propulsion/airframe integration consumed the bulk of the CFD applications.
Many other features of the aircraft design were influenced by CFD. For example,
CFD was instrumental in design of the fuselage. Once the body diameter was
settled, CFD was used to design the cab. No further changes were necessary as
a result of wind tunnel testing. In fact, the need for wind tunnel testing in future
cab design was eliminated ... As a result of the use of CFD tools, the number
of wings designed and wind tunnel tested for high-speed cruise lines definition
during an airplane development program has steadily decreased (Figure 3).2
These advances in developing and using CFD tools for commercial airplane
development have saved Boeing tens of millions of dollars over the past 20 years.

!'See Figure I.1.5.

2 See Figure 1.1.6a. This figure shows information similar to Figure 1.1.4. Figure 1.1.6b shows the
analogous evolution, seen from the European AIRBUS industry. We will come back to the various
models mentioned in these figures in Chapter 2.
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Figure 1.1.5 Role of CFD in the design of the Boeing 777. The arrows indicate
the parts that were designed by CFD. From Johnson et al. (2003). Reproduced by
permission of AIAA.

However, significant as these savings are, they are only a small fraction of the
value CFD delivered to the company.

The following general considerations, from the same Boeing paper, confirm the
strategic impact of CFD:

A much greater value of CFD in the commercial arena is the added value of
the product (the airplane) due to the use of CFD. Value is added to the airplane
product by achieving design solutions that are otherwise unreachable during
the fast-paced development of a new airplane. Value is added by shortening
the design development process. Time to market is critical and very important
in the commercial world is getting it right the first time. No prototypes are
built. From first flight to revenue service is frequently less than one year! Any
deficiencies discovered during flight test must be rectified sufficiently for govern-
ment certification and acceptance by the airline customer based on a schedule
set years before. Any delays in meeting this schedule may result in substantial
penalties and jeopardize future market success. CFD is now becoming more
interdisciplinary, helping provide closer ties between aerodynamics, structures,
propulsion and flight controls. This will be the key to more concurrent engineer-
ing, in which various disciplines will be able to work more in parallel rather
than in the sequential manner, as is today s practice. The savings due to reduced
development flow time can be enormous!

1o be able to use CFD in these multidisciplinary roles, considerable progress
in algorithm and hardware technology is still necessary. Flight conditions of
interest are frequently characterized by large regions of separated flows. For
example, such flows are encountered on transports at low speed with deployed
high-lift devices, at their structural design load conditions or when transports
are subjected to in-flight upsets that expose them to speed and/or angle of attack
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Figure I.1.6a  Evolution of the CFD tools over the last 40 years at Boeing, with an
indication of the influence of CFD on the reduction of the number of wing tests (for
color image refer Plate I.1.6a). Courtesy Enabling Technology and Research
Organization, Boeing Commercial Airplanes.
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Figure I.1.7  Evolution of Computer performance over the last 50 years, expressed
in GfLOP/s, on a logarithmic scale. Courtesy Ch. Hinterberger and W. Rodi,
University of Karlsruhe, Germany.

conditions outside the envelope of normal flight conditions. Such flows can only
be simulated using the Navier—Stokes equations. Routine use of CFD based
on Navier—Stokes formulations will require further improvements in turbulence
models, algorithm and hardware performance. Improvements in geometry and
grid generation to handle complexity such as high-lift slats and flaps, deployed
spoilers, deflected control surfaces and so on, will also be necessary. How-
ever, improvements in CFD alone will not be enough. The process of aircraft
development, itself, will have to change to take advantage of the new CFD
capabilities.

Another interesting section in this paper deals with the very important interaction
between CFD and wind tunnel tests of components. We recommend you to read this
section as a testimony of how CFD is contributing to raise the quality of experimental
investigations.

In the previous paragraphs, we referred several times to the extraordinary growth

of computing power over the last 50 years. This is summarized in Figure 1.1.7,
where the various computer systems are positioned by their CPU performance
in function of their year of appearance. The CPU performance is measured in
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GigaFlops: i.e. Billions (10°) of floating point operations per second (Flop/s); a quite
impressive number, a Flop being typically an addition or subtraction on the computer.
The first computers in 1955 had a processor speed of 107> Gflop/s, that is of the order
of 10,000 Flop/s; while the first PC with a 386 processor reached 100,000 Flop/s.
Note that the level of 1000 Gflop/s, called TeraFlop/s, has been reached around the
year 2000. The fastest computers shown on this figure turn around 200 TeraFlop/s,
obtained through massively parallel computers over 100,000 processors. On the other
hand, current high-end PCs, which are scalar computers, have a remarkable speed of
the order of 5 Gflop/s.

1.2 THE COMPONENTS OF A CFD SIMULATION SYSTEM

Having positioned CFD, and its importance, in the global technological world of
virtual prototyping, we should now look at the main components of a CFD system.

We wish to answer the following question: What are the steps you have to define in
order to develop, or to apply, a CFD simulation? We make no difference at this stage
between these two options, as it is similarly essential for the ‘user’ of a CFD code to
understand clearly the different options available and to be able to exercise a critical
judgment on all the steps involved.

Refer to Figure 1.2.1 for a synthetic chart and guide to this section and the structure
of this book. The CFD components are defined as follows:

e Step I: It selects the mathematical model, defining the level of the approximation
to reality that will be simulated (forms the content of Part I of this volume).

e Step 2: It covers the discretization phase, which has two main components,
namely the space discretization, defined by the grid generation followed by the
discretization of the equations, defining the numerical scheme (forms the content
of Part II of this volume).

e Step 3: The numerical scheme must be analyzed and its properties of stability
and accuracy have to be established (forms the content of Part III of this volume).

e Step 4: The solution of the numerical scheme has to be obtained, by selecting the
most appropriate time integration methods, as well as the subsequent resolution
method of the algebraic systems, including convergence acceleration techniques
(forms the content of Part IV of this volume).

e Step 5: Graphic post-processing of the numerical data to understand and interpret
the physical properties of the obtained simulation results. This is made possible
by the existence of powerful visualization software.

Let us look at this in more details step by step.

1.2.1 Step 1: Defining the Mathematical Model

The first step in setting up a simulation is to define the physics you intend to simulate.
Although we know the full equations of fluid mechanics since the second half of the
19th century, from the work of Navier and Stokes in particular, these equations are
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Figure 1.2.1 Structure of a CFD simulation system.

extremely complicated. They form a system of nonlinear partial differential equa-
tions, with major consequences of this nonlinearity being the existence of turbulence,
shock waves, spontaneous unsteadiness of flows, such as the vortex shedding behind
acylinder, possible multiple solutions and bifurcations. See Chapter 2 for some typical
examples.

If we add to the basic flow more complex phenomena such as combustion, mul-
tiphase and multi-species flows with eventual effects of condensation, evaporation,
bursting or agglomeration of gas bubbles or liquid drops, chemical reactions as in fire
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simulations, free surface flows, we need to model the physical laws describing these
phenomena and provide the best possible approximations.

The essential fact to remember at this stage is that within the world of continua,
as currently applied to describe the macroscopic behavior of fluids, there is always
an unavoidable level of empiricism in the models. It is therefore important that you
take notice already that any modeling assumption will be associated with a generally
undefined level of error when compared to the real world.

Therefore, keep in mind that a good understanding of the physical properties and
limitations of the accepted models is very important, as it is not unusual to dis-
cover that discrepancies between CFD predictions and experiments are not due to
errors in experimental or numerical data, but are due to the fact that the theoretical
model assumed in the computations might not be an adequate description of the real
physics.

Consequently, with the exception of Direct Numerical Simulation (DNS) of the
Navier—Stokes equations, we need to define appropriate modeling assumptions and
simplifications. They will be translated into a mathematical model, formed generally
by a set of partial differential equations and additional laws defining the type of fluid,
the eventual dependence of key parameters, such as viscosity and heat conductivity
in function of other flow quantities, such as temperature and pressure; as well as vari-
ous quantities associated to the description of additional physics and other reactions,
when present.

The establishment of adequate mathematical models for the physics to be described
form the content of Part I of this volume. It is subdivided into three chapters
dealing with:

e the basic flow equations (Chapter 1);

e anillustrated description of the different approximation levels that can be selected
to describe a fluid flow (Chapter 2);

e the mathematical properties of the selected mathematical models (Chapter 3).

1.2.2 Step 2: Defining the Discretization Process

Once a mathematical model is selected, we can start with the major process of a
simulation, namely the discretization process.

Since the computer recognizes only numbers, we have to translate our geometrical
and mathematical models into numbers. This process is called discretization.

The first action is to discretize the space, including the geometries and solid bod-
ies present in the flow field or enclosing the flow domain. The solid surfaces in
the domain are supposed to be available from a CAD system in a suitable digi-
tal form, around which we can start the process of distributing points in the flow
domain and on the solid surfaces. This set of points, which replaces the continuity
of the real space by a finite number of isolated points in space, is called a grid or
a mesh.

The process of grid generation is in general extremely complex and requires ded-
icated software tools to help in defining grids that follow the solid surfaces (this is
called ‘body-fitted’ grids) and have a minimum level of regularity.
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Surface grid (b) Structured grid for part of the lung passages

(a) Structured grid of a landing gear. shown in Plate I.1.2. From Van Ertbruggen
From Lockard et al. (2004). et al. (2005).

Reproduced by permission from AIAA.
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(c) Grid for a 3D turbine blade passage. (d) Close-up view of the turbine grid.

Figure 1.2.2  Examples of structured grids.

We will deal with the grid-related issues in Chapter 6, but we wish already here to
draw your attention to the fact that, when dealing with complex geometries, the grid
generation process can be very delicate and time consuming.

Grid generation is a major step in setting up a CFD analysis, since, as we will
see later on, in particular in Chapters 4, 5 and 6, the outcome of a CFD sim-
ulation and its accuracy can be extremely dependent on the grid properties and
quality.

Please notice here that the whole object of the simulation is for the computer
to provide the numerical values of all the relevant flow variables, such as velocity,
pressure, temperature, . . ., at the positions of the mesh points.

Hence, this first step of grid generation is essential and cannot be omitted. Without
a grid there is no possibility to start a CFD simulation.

Figure 1.2.2 shows examples of 2D and 3D structured grids, while Figure 1.2.3
shows some examples of unstructured grids. These concepts will be detailed further
in Chapter 6.

So, once a grid is available, we can initiate the second branch of the discretization
process, namely the discretization of the mathematical model equations, as shown in
the chart of Figure .2.1.
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Unstructured tetrahedral grid for an engine.  Unstructured hexahedral grid for an oil valve.
From ICEM-CFD. HEXPRESS mesh. Courtesy NUMECA Int.

Figure 4: CENTAUR hybrid N.-S.mesh
multiblock N.-S.mesh around the EC145 around the EC145 isolated fuselage:
isolated fuselage: middle plane. middle plane.

.Fig.ure 3: ICEM-Hexa structured

From D"Alascio et al. (2004).
A middle plane section of an helicopter fuselage with structured and unstructured grids.

Figure 1.2.3  Examples of unstructured grids (for color image refer Plate 1.2.3).

As the mesh point values are the sole quantities available to the computer, all
mathematical operators, such as partial derivatives of the various quantities, will
have to be transformed, by the discretization process, into arithmetic operations on
the mesh point values.

This forms the content of Part II, where the different methods available to perform
this conversion from derivatives to arithmetic operations on the mesh point values
will be introduced. In particular, we will cover the:

e finite difference method in Chapter 4,
e finite volume and finite element methods in Chapter 5,
e grid properties and guidelines in Chapter 6.

1.2.3 Step 3: Performing the Analysis Phase

After the discretization step, a set of algebraic relations between neighboring mesh
point values is obtained, one relation for each mesh point. These relations are called
a numerical scheme.
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The numerical scheme must satisfy a certain number of rules and conditions to
be accepted and subsequently it must be analyzed to establish the associated level of
accuracy, as any discretization will automatically generate errors, consequence of the
replacement of the continuum model by its discrete representation.

This analysis phase is critical; it should help you to select the most appropriate
scheme for the envisaged application, while attempting at the same time to minimize
the numerical errors. This will be introduced and discussed in Part III.

Part IIT covers many subjects and should be studied with great attention. The
following topics will be dealt with:

e The concepts of consistency, stability and convergence of a numerical scheme
and a method for the analysis of stability in Chapter 7, including the quantitative
evaluation of the errors associated to a selected scheme.

e A general approach to properties of numerical schemes will be presented in
Chapter 8, together with a methodology to generate schemes with prescribed
accuracy. In addition this chapter will introduce the property of monotonicity
leading to nonlinear high-resolution scheme.

.2.4 Step 4: Defining the Resolution Phase

The last step in the CFD discretization process is solving the numerical scheme
to obtain the mesh point values of the main flow variables. The solution algorithms
depend on the type of problem we are simulating, i.e. time-dependent or steady flows.
This will require techniques either to solve a set of ordinary differential equations in
time, or to solve an algebraic system.

For time-dependent numerical formulations, a particular attention has to be given
to the time integration, as we will see that for a given space discretization, not all the
time integration schemes are acceptable.

It is essential at this stage to realize that at the end of the discretization process, all
numerical schemes finally result in an algebraic system of equations, with as many
equations as unknowns. This number can be quite considerable, as the present capacity
of computer memory storage allows large grids to be used to enhance the accuracy
of the CFD predictions. The flow around an aircraft, such as shown in Figure 1.1.2,
might require a grid close to 50 million points for a minimal acceptable accuracy.
This number is substantiated by the outcome of a recent ‘Drag Prediction” workshop,
run in 2003 by ATAA3and NASA 4

The objective of the workshop was to assess the state-of-the-art of CFD for aircraft
drag and lift prediction (see the review by Hemsch and Morrison, 2004). The main
outcome of this workshop was that a grid of the order of 10—15 million points was
required for acceptable accuracy of current CFD codes, on a wing—body—nacelle—
pylon (WBNP) combination. The enhanced complexity of a full aircraft, compared

3 American Institute of Aeronautics and Astronautics (USA).
4 National Aeronautics and Space Administration (USA).
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with this simplified WBNP combination, leads to a minimal estimate of the order of
50 million points for the full aircraft. With at least 5 unknowns per point (the three
velocity components, pressure, and temperature) we wind up with an algebraic system
of 250 million equations for 250 million unknowns; system that has to be solved
many times during the iterative process toward convergence. You can understand on
this example why the availability of very fast methods for the solution of these huge
algebraic systems is crucial for an effective CFD simulation.

An introduction to the most important methods will be dealt with in Part IV, includ-
ing also techniques for convergence acceleration, such as the important multigrid
methods. Part IV is subdivided into:

e methods for ordinary differential equations, referring to the time integration
methods, in Chapter 9;
e methods for the iterative solution of algebraic systems in Chapter 10.

Once the solution is obtained, we have to manipulate this considerable amount of
numbers to analyze and understand the computed flow field. This can only be achieved
through powerful visualization systems, which provide various software tools to study,
qualitatively and quantitatively, the obtained results. Typical examples of outputs that
can be generated are shown in Figure 1.2.4:

e Cartesian plots for the distribution of a selected quantity in function of a
coordinate direction or along a solid wall surface (Figure 1.2.4a).

e Color plots of a given quantity on the solid surface or in the flow field (Figure
[.2.4b and ¢).

e Visualization of streamlines, see Figure 1.1.3 and of velocity vectors (Figure
1.2.4d).

e Local values of a quantity in an arbitrary point, obtained by clicking the mouse
on that point.

® Various types of animations.

Many other examples of visualizations will be shown in the following chapters.

The last part of Volume I, Part V, is devoted to several basic applications of the
developed methodology, in order to guide you toward your first attempts in working
out a CFD simulation. We will consider one-dimensional models for scalar variables,
up to the Euler equations for nozzle flows, as well as two-dimensional potential and
laminar flow models and present different numerical schemes in sufficient detail for
you to program and solve these applications:

e Chapter 11 will deal with 2D potential flows and 2D inviscid flows governed by
the system of Euler equations.
e Chapter 12 will deal with the 2D Navier—Stokes equations.

A particular section will be also devoted to some general Best Practice Guidelines
to follow when applying existing, commercial or other, CFD tools. This will be based
on the awareness of all possible sources of errors and uncertainties that can affect the
quality and the validity of the obtained CFD results.
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(a) Cartesian plot of pressure distribution at (b) Instantaneous iso-surfaces of vorticity
various positions along a wing—body—nacelle  colored by the span-wise component of
model, compared to experimental data. vorticity of a 70° delta wing.

From Tinoco and Su (2004), From: Morton (2004)

Reproduced by permission from AIAA.
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(b) Perturbation pressure on solid surfaces

(c) Perturbation pressure distribution for an (d) Color plot and velocity vectors in one
aero-acoustic simulation of the noise cross-section of the lung bifurcations shown in
generated by a landing gear. Figures 1.1.2 and 1.2.2. From Van

From Lockard et al. (2004). Ertbruggen et al. (2005).

Reproduced by permission from AIAA.

Figure 1.2.4 Examples of visual results from CFD simulations (for color image
refer Plate 1.2.4).

1.3 THE STRUCTURE OF THIS VOLUME

The guideline to the overall organization of this volume is summarized on the fol-
lowing chart (Figure 1.3.1), where each chapter is positioned. This will help you to
situate at any time the topics you are studying within the global context.

As mentioned earlier, the structure and the presentation of this second edition of
Volume I has been re-organized and focused in the first instance toward beginners and
newcomers to CFD. We have attempted to guide the student and reader to progressively
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become familiar with the essential steps leading to a CFD application, either as a
starting developer of CFD applications, or as a user of existing CFD tools, such
as commercial software packages. In both cases, it is essential to acquire a deep
understanding of all the components entering a CFD simulation, and in particular to
develop a strong knowledge of the possible sources of errors and uncertainties.

On the other hand, we wish to give the opportunity to more advanced readers
and students to also find material that would meet their objectives of accessing more
advanced topics, while having at the same time a direct access to all the fundamentals.

Hence, we have identified in many chapters, topics and sections, indicated by A for
Advanced, that we consider outside the introductory level and that can form the basis

for a more advanced course. The relevant A-sections will be identified at the level of
each chapter.

It goes without saying that any combination of ‘A’ sections with the other sections
can be offered as course material at the discretion of the instructors.

On the other hand, we also hope that here and there, through the chapters, the
newcomer to CFD will have his/her intellectual curiosity aroused by the subject and
tempted to make an incursion in some of these more advanced subsections.
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Part |

The Mathematical Models for Fluid
Flow Simulations at Various
Levels of Approximation

INTRODUCTION

The invention of the digital computer and its introduction in the world of science and
technology has led to the development, and increased awareness, of the concept of
approximation. This concerns the theory of the numerical approximation of a set of
equations, taken as a mathematical model of a physical system. But it concerns also
the notion of the approximation involved in the definition of this mathematical model
with respect to the complexity of the physical world.

We are concerned here with physical systems for which it is assumed that the
basic equations describing their behavior are known theoretically, but for which no
analytical solutions exist, and consequently an approximate numerical solution will
be sought instead.

For various reasons, the first of these being the great complexity, it is often not
practically possible to describe completely the evolution of the system in its full
complexity. Of course, the definition of these limits is relative to a given time and
environment and these are being extended with the evolution of the computer tech-
nology. But taken at a given period, it is necessary to define mathematical models that
will reduce the complexity of the original basic equations and make them tractable
within fixed limits. Actually, the first level to be defined is the ‘scale of reality’ level.
Physicists propose various levels of description of our physical world, ranging from
subatomic, atomic or molecular, microscopic, macroscopic (defined roughly as the
scale of classical mechanics) up to the astronomical scale. As is well known, in the
statistical description of a gas, the motion of the individual atoms or molecules are
taken into consideration and the behavior is ruled by the Boltzmann equation. This
description leads for instance to the definition of temperature as a measure of the mean
kinetic energy ofthe gas molecules; to a definition of pressure as a result of the impulse
of molecules on the walls of the body containing the gas; to a definition of viscosity
connected to the momentum exchange due to the thermal molecular motion, and so on.

Atthis molecular level of description the fundamental variables are molecule veloc-
ities, number of particles per volume and other variables defining the motion of the
individual molecules, while pressure, temperature, viscosity e.g. are mean properties
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which are deduced from other variables, more basic at this level of reality. Hence,
we may consider that each level of reality can be associated with a set of fundamen-
tal variables, from which other variables can be defined as measures of certain mean
properties. Continuing in the line of this example we have, beyond the molecular level
of statistical mechanics, the atomic level, the nuclear and the subnuclear level that we
do not plan to discuss here, since they are fully outside the domain of definition of
a fluid.

Actually, fluid dynamics starts to exist as soon as the interaction between a suf-
ficiently high number of particles affects and dominates, at least partly, the motion
of each individual particle. Hence, fluid dynamics is essentially the study of the
interactive motion and behavior of large number of individual elements.

The limit between individual motions of isolated particles or elements and their
interactive motion is of significance in the study of rarefied gases. It is known that
the interaction between the particles becomes negligible if the mean free path length
attains a magnitude of the order of the length scale of the considered system. The ratio
of'the mean free path length to the reference length scale is called the Knudsen number.

For higher values of the mean free path length, or of the Knudsen number, the
particles behave essentially as individual elements. These limit situations will not
be considered here since they are outside the field of classical fluid dynamics. Note
however that the intermediate range between the continuum and the rarefied gas
approximations is of practical significance for the prediction of the re-entry phase of
a Space Shuttle. When re-entering the earth atmosphere from space, the Space Shuttle
crosses the atmosphere from very high altitudes, where it cannot be considered as
a continuum, through an intermediate range that evolutes with reducing altitude to
a continuum fluid. We need therefore special models, intermediate between the
Navier—Stokes and the Boltzmann equations to handle these situations, which are
extremely critical for the safety of the return phase of the Shuttle.

We will focus, in the following, on the level of reality in which the density of
elements is high enough, so that we can make the approximation of considering the
system of interacting elements as a continuum. This expresses that continuity or close-
ness exists between the elements such that their mutual interaction dominates over
the individual motions, although these are not suppressed. What actually happens, is
that a collective motion is superimposed on the motion of the isolated elements as a
consequence of the large number of these elements coexisting within the same domain.

From this point of view, we understand easily why the concepts of fluid mechanics
can be applied to a variety of systems consisting of a large number of interacting
individual elements.

This is the case for the current fluids and gases where the individual ‘element’,
or fluid particle is actually not a single molecule, but consists of a large number
of molecules occupying a small region with respect to the scale of the considered
domain, but still sufficiently large in order to be able to define a meaningful and non-
ambiguous average of the velocities and others properties of the individual molecules
and atoms occupying this volume. It implies that this elementary volume contains a
sufficiently high number of molecules, with for instance a well defined mean velocity,
mean kinetic energy, allowing to define velocity, temperature, pressure, entropy and
so on, at each point. Hence, associated fields, which will become basic variables for
the description of the system, can be defined although the temperature, or pressure, or
entropy of an individual atom or molecule is not defined and generally meaningless.



The Mathematical Models for Fluid Flow Simulations 23

In the classical interpretation of turbulence, each fluid particle as defined above
enters into a stochastic motion and in defining mean turbulent variables, such as a
mean turbulent velocity field, an average is performed, in this case an average in time,
over the motion of the fluid particles themselves.

A still higher level of averaging occurs in the description of flows through porous
media such as soils. In the description of groundwater flows an ‘element’ is the set
of fluid particles, as defined above, contained in a volume large enough as to contain
a great number of soil particles and fluid particles such that a meaningful average
can be performed, but still small with respect to the dimensions of the region to be
analyzed. Such a volume is considered as a ‘point’ at this level of description, and the
fields are attached to these points, implying that groundwater flow theories do study
the behavior of collection of fluid particles.

Following this line, the movement or overall displacement of crowds at exit of rail-
way stations during rush hours, or of a football stadium, can be analyzed with fluid
mechanical concepts. In this case, an ‘element’ is the set of persons contained in a
region small with regard to the dimensions of the station for instance, but still contain-
ing a sufficiently high number of individuals in order to define non-ambiguous average
values, such as velocity and other variables. In this description, the displacement of
an individual is not considered, but only the motion of groups of individuals.

A similar analysis can be defined for heavy traffic studies, where an ‘element’ is
defined as a set of cars (in the one-dimensional space formed by the road). Obviously
in a light traffic, the isolated car behaves as a single particle but collective motion
comes in when a certain intensity of traffic has been reached such that the speed of
an individual car is influenced by the presence of the other cars. This is actually to be
considered as the onset of a ‘fluid mechanical’ description.

Finally, at a still larger scale, astrophysical fluid dynamics can be defined for the
study of the interstellar medium or for the study of the formation and evolution of
galaxies. In this latter case for instance, an ‘element’ consists of a set of stellar objects,
including one or several solar systems and the dimensions of a ‘point’ can be of the
order of light years.

In conclusion of these considerations, we can say that fluid mechanics is essentially
the study of the behavior of averaged quantities and properties of a large number of
interacting elements. The same is true for another domain of scientific knowledge,
namely thermodynamics, which is also the study of systems of large numbers of inter-
acting elements. It is therefore no wonder that thermodynamics is, with the exception
of incompressible isothermal media, tightly interconnected with fluid mechanics and
plays animportantrole in the description of the evolution of ‘fluid mechanical’ systems
as mentioned above.

An essential step in fluid dynamics is therefore the averaging process. We have
to decide, in front of a given system, which level of averaging will be performed
in function of the quantities to be predicted, in function of the significant variables
which can be defined in a meaningful way, in function of the precision and degree of
accuracy to be achieved in the description of the system’s behavior. This is a basic
task for the scientists in charge of the analysis that requires a great understanding of
the physics of the system, a judgment and sense of compromise between required
level of accuracy and degree of sophistication of the chosen mathematical model.

The next step in the definition of the levels of approximation is to define a time
or ‘steadiness level’. This implies an estimation of the various time constants of the



24 The Mathematical Models for Fluid Flow Simulations

considered flow situation and the choice of the lowest time constant to be taken into
consideration in the modelization of this flow system. Then a time averaging will be
performed with regard to the time constants lower than the chosen minimal value. The
best-known example of this procedure is the system of time averaged Navier—Stokes
equations for the mean turbulent flow variables. An averaging is performed over the
turbulent fluctuations, since we are concerned in that case with variations of the flow
slower that the turbulent fluctuations and hence, with time constants much larger than
the time constant of these fluctuations. Through this procedure, extra terms appear in
the equation, the Reynolds stresses, which are averaged products of fluctuations, and
for which external information will have to be provided.

Along similar lines, in Large Eddy Simulations, known as the LES approximation,
the turbulent fluctuations are averaged only over part of their spectrum, namely the
small scales are modeled while the larger turbulent motion, associated with the lower
frequencies, is directly simulated.

The spatial level of approximation defines the number of space variables used in the
model. We have to decide in function of certain assumptions concerning the physical
behavior of the system, if a one- or two-dimensional description will provide suffi-
ciently accurate information about the behavior of the flow. It is of importance to note
that the basic flow equations being three-dimensional any description with less than
three space variables will be obtained by disregarding the flow variations with respect
to the corresponding space coordinate and this can be formulated mathematically by
averaging out the equations over that space variable.

Therefore, the averaging process, here over space, is again essential. In this space
averaging, we will obtain equations in a two- or one-dimensional region, which
contain terms describing the averaged influence of the full three-dimensional motion.
These terms, analogous to the Reynolds stresses, will generally be neglected due to
the lack of information to estimate them, although they can, or could, be estimated
in certain cases.

Since the averaging procedure implies a loss of information in the averaged space
variables, this information will have, in many cases, to be provided from ‘outside’
the model, for instance, through empirical data. It is also clear therefore, that simple
models like one-dimensional flow descriptions, may require more empirical or exter-
nal input than a viscous three-dimensional description, if some contributions from
the three-dimensionality are to be taken into account.

The next level of approximation, the ‘dynamical level’, is tied to an estimation of the
relative influence of the various forces and their components on the system’s behavior.
The dynamical evolution of a flow system is determined by the equilibrium of the
different forces acting on it, but it seldom occurs that all the force components are
equally important. Therefore, a very basic step in setting up a mathematical model for
the description of a system is an estimation of the dominant force components in order
to simplify the model as strongly a possible. For instance, although gravity forces are
always present on earth, in many cases these forces have only a negligible influence on
the flow behavior. The detailed study of the influence of viscosity by Prandtl, which
led to the boundary layer concept, is maybe the most fascinating example of the
consequences of a deep analysis of the relative influence of forces. As is well known,
the considerable simplification of the Navier—Stokes equations introduced through
this analysis, allowed the practical calculation of many flow situations, which were
largely intractable by the full Navier—Stokes equations.
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This boundary layer concept led to the definition of the regions of validity of
inviscid flows, in which the viscosity forces could be neglected. Therefore, inviscid
flow approximations play an important role in fluid mechanics although their range
of validity in internal flows is more restricted than in external aerodynamics.

It is to be noted that the different levels of approximation considered here can
strongly interact with each other. For instance on a rotating blade of a turboma-
chine, the centrifugal forces will create a radial migration of the boundary layer fluid
along the blade, leading to an increased spanwise mixing of the flow and hence will
limit the validity of a purely two-dimensional description of the blade-to-blade flow.
But in all cases, the final word with regard to the validity of a given model is the com-
parison to experimental data, or to computations at a higher level of approximation.

These remarks are presented here to introduce the methodology to be followed in
the next chapters. After having summarized the basic flow equations in Chapter 1,
a systematic presentation of various mathematical models describing the most current
approximations will be given in Chapter 2. Finally, Chapter 3 will introduce the
analysis of the properties of the system of equations describing the selected model;
see the guideline chart (Figure 1.3.1) for the global overview.
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Chapter 1
The Basic Equations of Fluid Dynamics

OBJECTIVES AND GUIDELINES

This first chapter will introduce the initial step in defining a CFD application, namely
the selection of the model to be discretized. In order to guide you through the com-
plexities of fluid mechanics, which we alluded to in the introduction to this Volume,
we need to establish the basic laws governing fluid flows.

You certainly have seen many flow situations and you have certainly recognized
that they can be very complex, with phenomena such as turbulence, which is a global
instability of a flow, as a dominant element of most of the flows encountered in nature
and in technology.

In addition, applications to CFD have led to a new approach and a new way of
looking at the laws of fluid mechanics. Although they can be written in many different
mathematical forms, CFD has led us to put forward a specific form of these laws,
through the concept of conservation and of conservation laws. This concept will be
central to most of this chapter.

In Section 1.1 we develop and present the most general form of a conservation law,
without specifying the nature of the ‘conserved’ quantity. To achieve this, we have
to define first what conservation means and how we recognize an equation written
in conservative form. We will see that this is a fundamental concept for CFD in
many chapters later on, but the main reason for the privileged conservative form
is connected to the requirement that, after the equations are discretized, essential
quantities such as mass or energy will be conserved at the discrete level. This is
certainly essential, as you can imagine, since a numerical simulation wherein mass or
energy would be lost because of numerical artifacts, would be totally useless and not
reliable.

A conservation law is strongly associated to the concept of fluxes and we will
introduce in Section 1.1.2 the extremely important distinction between convective and
diffusive fluxes. This distinction is central to the whole of fluid mechanics and of CFD.

With the basis obtained in Section 1.1, we are ready to apply the general conserva-
tion laws to the three quantities that define uniquely the laws of fluid mechanics; mass,
momentum and energy, described and developed in detail in Sections 1.2, 1.3 and 1.4.

The flow chart in Figure 1.0.1 illustrates the links and the structure of this chapter.
We strongly suggest that you refer regularly, while progressing through the material,
to this chart as a guide for the order and relative importance of the various topics.

In addition, the part in gray indicates the sections containing more advanced mate-
rial that can form the basis of a more advanced CFD course. Of course, any instructor
can make his/her own ‘cocktail” between the various topics, according to the level of
the students.

These Advanced sections cover a few important topics, when dealing with CFD
applications to rotating systems or moving grids, which often occur in practice,
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in large areas of industry, such as rotating machines, flow around helicopters,
or with moving grids as encountered in fluid—structure interactions with vibrating
surfaces.

We have also added a short section, which is a straightforward extension of the
general integral form of the momentum equation, in presence of solid bodies, pro-
viding the formulation to post-process CFD data in order to extract the forces exerted
on a body by the flow, such as lift and drag.

1.1 GENERAL FORM OF A CONSERVATION LAW

As mentioned in the introduction, the conservation law is the fundamental concept
behind the laws of fluid mechanics.

But what is a conservation law?
It is altogether very simple in its basic logic, but can become complicated by its
internal content. Conservation means that the variation of a conserved (intensive)
flow quantity within a given volume is due to the net effect of some internal sources
and of the amount of that quantity which is crossing the boundary surface. This amount
is called the flux and its expression results from the mechanical and thermodynamic
properties of the fluid. It will be defined more precisely in the next section. Similarly,
the sources attached to a given flow quantity are also assumed to be known from
basic studies. The fluxes and the sources are in general dependent on the space—time
coordinates, as well as on the fluid motion. The associated fluxes are vectors for a
scalar quantity and tensors for a vector quantity like momentum.

We can state the conservation law for a quantity U as the following logical
consistency rule:

The variation of the total amount of a quantity U inside a given domain is equal
to the balance between the amount of that quantity entering and leaving the
considered domain, plus the contributions from eventual sources generating
that quantity.

Hence, we are looking at the rate of change of the quantity U during the flow evolution,
as a flow is a moving and continuously changing system.

Although we will write the conservation law for an undefined quantity U, it should
be mentioned at this stage that not all flow quantities obey a conservation law. The
identification of the quantities that obey a conservation law is defined by the study
of the physical properties of a fluid flow system. It is known today that the laws
describing the evolution of fluid flows (this is what we call fluid dynamics) are totally
defined by the conservation of the following three quantities:

1. Mass
2. Momentum
3. Energy.

This represents in total five equations, as the momentum, defined as the product of
density and velocity, is a vector with three components in space.
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Figure 1.1.1 General form of a conservation law for a scalar quantity.

On the other hand, it is essential to keep in mind that other quantities, such as
pressure, temperature, entropy, for instance, do not satisfy a conservation law. This
does not mean that we cannot write an equation for these quantities, it just means that
this equation will not be in the form of a conservation law.

1.1.1 Scalar Conservation Law

Let us consider a scalar quantity per unit volume U, defined as a flow related property.

We now consider an arbitrary volume €2, fixed in space, bounded by a closed
surface S (see Figure 1.1.1) crossed by the fluid flow.

The surface S is arbitrary and is called a control surface, while the volume 2 is
called a control volume.

Our goal here is to write the fundamental law in its most general form, by expressing
the balance of the variation of U, for a totally arbitrary domain 2. This control volume
can be anywhere in the flow domain and can be of arbitrary shape and size.

To apply the conservation law as defined above, we have to translate mathematically
the quantities involved. The first one is the ‘fotal amount of a quantity U inside a
given domain’. If we consider the domain of volume €2, the total amount of U in
is given by

| vee
Q

and the variation per unit time of the quantity U within the volume 2 is given by

]
— | UdQ
ot Jo
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Remark

I wish here to draw your attention to the interpretation of this mathematical expres-
sion. The above relation would be read by a mathematician as ‘the partial derivative
with respect to time of the volume integral of U over Q°. However, I would like you to
‘translate’ this mathematical language in its physical meaning, by reading this rela-
tion instead as: ‘the variation (d) per unit of time (./0t) of the total amount of U in Q.
Try therefore, whenever appropriate, to always ‘read’ a mathematical expression by
its translation of a physical property.

Coming back to the conservation law, we have now to translate mathematically
‘the amount of that quantity U entering and leaving the considered domain’.

This is where the physics comes in: we know from the study of the laws of physics
that the local intensity of U will vary through the effect of quantities called fluxes,
which express the contribution from the surrounding points to the local value of U,
describing how the quantity U is transported by the flow.

The flux is a fundamental quantity associated to a conserved flow variable U,
and is defined as the amount of U crossing the unit of surface per unit of time.
It is therefore a directional quantity, with a direction and an amplitude, so that it
can be represented as a vector. If this vector is locally parallel to the surface, then
nothing will enter the domain. Consequently, only the component of the flux in the
direction of the normal to the surface will enter the domain and contribute to the rate
of change of U. So, the amount of U crossing the surface element ds per unit of
time is defined by the scalar product of the flux and the local surface element (see
Figure 1.1.1),

F,dS =F-dS

with the surface element vector dS pointing along the outward normal.
The net total contribution from the incoming fluxes is the sum over all surface
elements dS of the closed surface S, and is given by

—fﬁ-c@
S

The minus sign is introduced because we consider the flux contribution as positive
when it enters the domain. With the outward normal as positive, the scalar prod-
uct will be negative for an entering flux, as seen from Figure 1.1.1. Hence the
need to add the minus sign. If we had defined the inward normal as positive, we
would not have added the minus sign. However, the generally accepted convention
is to define as positive the outward normal, so that the minus sign is of current
acceptance.

To finalize the balance accounts, we have to add contributions from the sources of
the quantity U.

These sources can be divided into volume and surface sources, Oy and QS and the
total contribution is

/SZQVdQ—I—?gSQS-dS’
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Hence, the general form of the conservation law for the quantity U is

3 - - - -
= UdQ:—?gF-dS—i—/QVdQ—i-?{QS-dS
S Q S

ot Jo

which is generally written as

d - o - N
— UdQ+%F-dS=/QVdQ+¢Qs-dS (1.1.1)
ot Jo S Q N

This is called the integral conservation form and is the most general expression of
a conservation law.
This form has some remarkable properties:

e Equation (1.1.1) is valid for any fixed surface S and volume 2.

e The internal variation of U, in absence of volume sources, depends only on the
flux contributions through the surface S and not on the flux values inside the
volume Q.

e The fluxes do not appear under a derivative or gradient operator and may therefore
be discontinuous, as will be the case in the presence of shock waves.

Why are these properties so important, in particular the second one? The importance
arises from the fact that we will require this property to remain valid also affer
discretization, to ensure hereby that we satisfy the conservation law at the discrete
level. When this is the case, we will speak of a ‘conservative numerical scheme’.

For instance, in an internal flow calculation it is essential to ensure mass conser-
vation, that is constancy of the mass flow in all sections, for any grid resolution.
Basically, we see from equation (1.1.1) that if the discretization leads to values of
fluxes inside the domain, they will not be distinguishable from the volume sources
and will therefore act as such. These ‘numerical’ sources will then destroy the conser-
vation property of the relevant quantity. For mass conservation, eventual numerical
sources will create or destroy mass and hence the mass flow rate will not remain
constant. As we will see in Chapter 5, this property can easily be satisfied on arbitrary
grids, in particular through application of the finite volume method.

Differential form of a conservation law
An alternative, local differential form of the conservation law can be derived by
applying Gauss’ theorem to the surface integral term of the fluxes and the surface
sources, assuming that these fluxes and surface sources are continuous.

Gauss’ theorem states that the surface integral of the flux is equal to the volume
integral of the divergence of this flux:

fﬁ.c@:/vﬁdg
S Q

for any volume €2, enclosed by the surface S, where the gradient or divergence operator
V is introduced. The explicit expression of this gradient operator is defined later in
Cartesian coordinates, see equation (1.2.7).
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Introducing this relation in the integral conservation law (1.1.1), we obtain

U . ..
/—dQ+/V-FdQ:/QVdQ+/V-QSdQ (1.1.2)
Q of Q Q Q

Since equation (1.1.2) is written for an arbitrary volume €2, it must be valid
locally in any point of the flow domain. This leads to the differential form of the
conservation law,

W - - -
o TV F=0r+9.0s (1.1.3)
or
W - -
otV F =05 =0 (1.1.4)

It is seen from these equations that surface sources have the same effect on the
system as a flux term and therefore we might as well consider them from the start as
an additional flux. However, we favor the present classification in fluxes and sources,
since it allows a clear physical interpretation of all the contributions to the evolution of
the quantity U. In any case, the term (1:" — Qs) can be considered as an effective flux.
This will be considered for the momentum conservation law, Section 1.3, where the
pressure and shear stresses are indeed acting as surface sources, but they are currently
added to the other flux terms to form one ‘effective’ flux for momentum conservation.
Note that:

e The fluxes (and surface sources) appear exclusively under the gradient operator,
which is the only space derivative term. This is the direct translation of the surface
integral of the fluxes in the integral form (1.1.1).

e This indicates the way to recognize a conservation law in differential form.
Look at all the space derivative terms: if they can be grouped as a divergence
operator, then the equation is in conservation form. If not, the equation is
said to be in ‘non-conservative’ form, or in ‘quasi-linear’ form.

e This differential form is more restrictive than the integral form, as it requires
the fluxes to be differentiable, i.e. having at least C1 continuity, which is not the
case in presence of shock waves, for instance.

e For any quantity U, physical assumptions must provide definitions for the fluxes
and the source terms, in function of other computed variables.

1.1.2 Convection-Diffusion Form of a Conservation Law

In Section 1.1.1, we have not provided any specific information concerning the fluxes,
except for the fact that they do exist for any conserved quantity U. However, we can
now be more specific and look closer to the physics of transport of a quantity U in a
fluid flow.

The fluxes are generated from two contributions: a contribution due to the convec-
tive transport of the fluid and a contribution due to the molecular agitation, which can
be present even when the fluid is at rest.
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The first component, which is always present, is the convective flux F, ¢, attached
to the quantity U in a flow of velocity v. It represents the amount of U that is carried
away or transported by the flow and is defined as

Fe=U% (1.1.5)

The local contribution of the convective flux through a surface element dg‘, (f’ c.dg)
has an important physical significance.

For U = p the fluid density, the corresponding convective flux through the surface
ds is equal to the local mass flow rate, where we designate the mass flow rate by

pv - dS = diin (1.1.6)

This quantity represents the amount of mass flowing through the surface dS, per unit
of time, and is expressed in kg/s.

For a different conserved quantity U = pu, where u is the quantity per unit mass,
the contribution of the convective flux is equal to

Fe-dS = puv - dS = udim (1.1.7)

clearly showing the physical meaning of the convective flux as defined by the quantity
u entrained by the local mass flow rate.

The second component is a diffusive flux Fp, defined as the contribution present
in fluids at rest, due to the macroscopic effect of the molecular thermal agitation. The
effect of the molecular motion translates in the tendency of a fluid toward equilibrium
and uniformity, since differences in the intensity of the considered quantity create
a transfer in space such as to reduce the non-homogeneity. This contribution to the
total flux is proportional to the gradient of the corresponding quantity, since it has to
vanish for a homogeneous distribution.

Diffusive fluxes do not always exist; for instance, from an analysis of the physical
properties of fluid, it is known that in a single-phase fluid at rest, no diffusion of spe-
cific mass is possible since any displacement of specific mass implies a macroscopic
displacement of fluid particles. Therefore, there will be no diffusive flux contribution
to the mass conservation equation.

The phenomenon of diffusion is indeed totally different from convection. We
can best understand the physics of diffusion by the following experiment, which
establishes the basics of diffusion.

Consider a reservoir of water, at rest, and inject a drop of a colored (black) dye,
supposed having the same density as water.

Look at Figure 1.1.2. What is going to happen? Will the drop stay in its position?
As you probably know from basics physics, we observe that after a certain time the
whole of the reservoir will become colored. What has happened?

Att=0 After a finite time

V v

Figure 1.1.2 A4 colored dye diffusing in a water reservoir.
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Due to the molecular agitation, the dye molecules are constantly in collision with
the water molecules and will be ‘hit’ many times in all directions to wind up in arbitrary
positions. As a result, after a certain time, we will find dye molecules everywhere and
the whole reservoir will be colored. For us, as observer, we do not see the molecules,
but we see the macroscopic results of these collisions and we notice the following
empirical facts:

e The process appears as a diffusion, since a local concentration peak diffuses
from a high local value to a lower concentration, in all directions.

e The process stops when there is no dye concentration differences anymore
between two points, that is when uniformity is reached, which corresponds to
a statistically homogenous distribution of the dye molecules between the water
molecules.

e The diffusion process between two points is proportional to the concentration
difference between these points and will tend to reduce these differences.

e An evolution whereby the concentration difference between two points increases
(called anti-diffusion) has never been observed in this experiment.

The ‘transport’ of the dye molecules can therefore be described, from the point of
view of continuum mechanics (since we view the fluid as a continuous media, instead
of seen as constituted by molecules), by expressing the macroscopic observations by
the existence of a diffusive flux, with the following properties:

e The diffusive flux is proportional to the gradient of the concentration, the gradi-
ent being the mathematical expression for the concentration difference between
neighboring points, in their direction.

e It has to be opposite to the gradient, to express the tendency toward uniformity.

e [t will be proportional to a diffusivity factor, which expresses its ‘intensity’,
depending on the nature of the considered quantity and its environment.

This is summarized by the mathematical gradient law of Fick, where « is the
diffusivity coefficient:

-

Fp = —kpVu (1.1.8)

Observe that the diffusivity constant « has units of m?/s for any quantity U.
Equation (1.1.3) then becomes

dou = .. = = .
%—i—V-(pvu):V-(Kqu)+QV+V-QS (1.1.9)

This equation is the general conservative form of a transport equation for the quantity
U = pu and is also referred to as a convection—diffusion equation.

The structure of this equation is of utmost importance, both from physical as
well as mathematical point of view and you should study this very carefully, as it
forms the backbone of all mathematical modeling of fluid flow phenomena.

The convection—diffusion equation takes its name from the physical properties
of the two flux contributions and from their specific mathematical expressions,
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which reflect very different physical properties. Therefore, the following proper-
ties will provide significant and fundamental guidelines when setting up a CFD
discretization.

Convective and diffusive fluxes have indeed totally different physical properties:

e Convective fluxes describe the ‘passive’ transport of the conserved variable by
the flow, which you can visualize as a piece of wood carried away by a river flow.

e Consequently the convective flux describes a phenomenon that has directional
properties, as it is proportional to the velocity. A convective flux cannot provide
a contribution in a direction transverse or opposite to the flow direction. It has
therefore properties very similar to wave propagation phenomena, which are
also essentially directional, for a selected propagation direction. We will see in
Chapter 3 that the relation between convective transport and wave propagation
is indeed very close.

e Observe that the convective flux appears in the conservation law (1.1.9) as a first
order partial derivative term, through the gradient term on the left-hand side.

e Another very important property of the convective flux, is that it is mostly non-
linear as the velocity field will generally depend on the transported variable. This
nonlinearity is an essential property of fluid dynamics, the most notorious being
turbulence, which is a direct consequence of the nonlinearity of the momentum
conservation equation (see Section 1.3).

e The diffusion effects appear in the conservation law (1.1.9) as a second order
partial derivative term. In particular, for constant values of the product (kp), the
diffusion term is the Laplace operator. This gives us the physical interpretation
of the Laplace operator, as describing an isotropic diffusion, in all directions
x,y,z, of the three-dimensional space

A A 0%u n 82u n 02u
U= —+—+ —
oxz - g?  09z2

e Remember therefore, that each time you come across a Laplace equation or
a Laplace operator, it describes a physical phenomenon corresponding to an
isotropic diffusion.

We can summarize now the essential differences between convection and diffusion
in Table 1.1.1.

These differences are crucial to the understanding of the physics of flows, but also
to the rules for discretization and to essential properties of CFD numerical schemes.

We can already mention here a most fundamental rule of numerical discretizations,
which will be elaborated further in the following chapters, namely:

The properties of a numerical discretization scheme may NEVER be in
contradiction with the physics it aims to describe.

It is therefore of uttermost importance to clearly understand the physical properties of
the equations to be discretized and the mathematical translation of these properties.
This particular issue, namely the one-to-one relation between physical interpretation
and mathematical properties of the equations will be treated in Chapter 3.
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Table 1.1.1 Differences between convection and diffusion.

Convection Diffusion

Expresses the transport of the Translates the effects of molecular
considered quantity by the flow collisions

Does not exist in a fluid at rest Does exist in a fluid at rest

All quantities are convected Not all quantities are subjected to diffusion
by the flow

Directional behavior Isotropic behavior

Leads to first order space derivatives  Leads to second order space derivatives in
in the conservation law the conservation law

Is generally nonlinear, when the flow  Is generally linear for constant fluid
velocity depends on the transported properties
variable

For instance, a numerical scheme tuned to handle a diffusion equation, such as a
Laplace equation (Au = 0) or a Poisson equation (Au = g), will not work when applied
to a pure convection dominated equation. See Section 11.3.2.2 in Chapter 11 for an
example of great historical significance, related to the first attempts to treat transonic
potential flows numerically, during the 1960s, in the early years of CFD development.

The Peclet number

The solution of convection—diffusion equations will strongly depend on the relative
strength of the two conflicting phenomena, which can range from pure convection to
pure diffusion.

It is therefore important in many applications to be able to judge this relative
strength by an appropriate indicator, which should be a non-dimensional number.
If we compare the convective and diffusive fluxes, given respectively by equations
(1.1.5) and (1.1.8), we can define a measure of their ratio, as follows:

\Fc| _ puV VL (LL10)
|1_5D| pku/l K o

where V is a reference velocity and L a reference length, such that V/L is a measure
of the gradient of u. The ratio in the right-hand side is the non-dimensional Peclet
number, measuring the relative strength between convection and diffusion:

VL
Pe= — (1.1.11)
K

Hence, if this ratio is much larger than one, the evolution of the quantity U will be
dominated by convection, while it will be dominated by diffusion when the Peclet
number is lower than 1. For values in the intermediate range, the solution U will have
a mixed behavior, influenced both by convection and diffusion.

We will come back to these important properties in several chapters of this
Volume.
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1.1.3 Vector Conservation Law

If the conserved property is described by a vector quantity U, then the flux becomes

a tensor F, the volume source term a vector Oy and the conservation equation (1.1.1)
becomes

8 o fd -> - g -
7/ UdQ + F-dS:/ QVdsz+7§QS-ds (1.1.12)
ot Jo s Q s

where the surface source term Qg can be written also as a tensor.
Applying Gauss’s theorem, if the fluxes and the surface sources are continuous, we
obtain

8 - - pu— - - —
— UdQ+/ V-FdQ:/ QVdQ+/ V.04 dQ2 (1.1.13)
ot Q Q Q Q

and the equivalent differential form:

4V F-0y=0r (1.1.14)

Here again, the surface sources have the same effect as the flux term. Note here that

the gradient of the flux tensor V . F is a vector.
The convective component of the flux tensor is given by

c=UQ®Y¥ (1.1.15)

!

where ® denotes the tensor product of the vectors v and U. Intensor notation, equation
(1.1.15) becomes

(Fe)y = Uy, (1.1.16)

and the diffusive component of the flux tensor takes the following form, for an homo-
geneous system

= ou;
(Fp)j = —Kkp— (1.1.17)
axj‘

with
U; = pu; (1.1.18)

The general form (1.1.12) is the integral formulation of a vector conservation law
and its most general expression, since it remains valid in presence of discontinuous
variations of the flow properties such as inviscid shock waves or contact discontinu-
ities. Only if continuity of the flow properties can be assumed, will equation (1.1.13)
and its fully equivalent differential form (1.1.14) be valid.
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Note that the differential form (1.1.14) is said to be in conservation form, recog-
nizable, as for the scalar equation, by the fact that all spatial flux terms, with the
exception of the volume sources, appear under the form of the divergence of a tensor
quantity.

The Equations of Fluid Mechanics

As already mentioned above, the motion of a fluid is completely described by the
conservation laws for the three basic properties: mass, momentum and energy.

The awareness of this fact has been one of the greatest achievements of modern
science, due to the high level of generality and degree of abstraction involved. Indeed,
how complicated the detailed evolution of a system might be, not only are the basic
properties mass, momentum and energy conserved during the whole process at all
times (in the sense to be defined later) but more than that, these three conditions
completely determine the behavior of the system without any additional dynamical
law. This is a very remarkable property, indeed. The only additional information
concerns the specification of the nature of the fluid (e.g. incompressible fluid, perfect
gas, condensable fluid, viscoelastic material, etc.).

Of course, an important level of knowledge implied in these statements has to be
defined before the mathematical expression of these laws can be written and used to
predict and describe the behavior of the system.

A fluid flow is considered as known if, at any instant of time, the velocity field
and a minimum number of static properties are known at every point. The number of
static properties to be known is dependent on the nature of the fluid. This number will
be equal to one for an isothermal incompressible fluid (e.g. the pressure), two (e.g.
pressure and density) for a perfect gas or any real compressible fluid in thermodynamic
equilibrium.

We will consider that a separate analysis has provided the necessary knowledge
enabling to define the nature of the fluid. This is obtained from the study of the behavior
of the various types of continua and the corresponding information is summarized
in the constitutive laws and in some other parameters such as viscosity and heat
conduction coefficients. This study also provides the information on the nature and
properties of the internal forces acting on the fluid since, by definition, a deformable
continuum such as a fluid, requires the existence of internal forces connected to the
nature of the constitutive law.

Besides, separate studies are needed in order to distinguish the various external
forces that influence the motion of the system in addition to the internal ones. These
external forces could be, e.g. gravity, buoyancy, Coriolis and centrifugal forces in
rotating systems, electromagnetic forces in electrical conducting fluids.

Let us now move to the derivation of these basic fluid dynamic equations, by
applying the general expressions derived in this section, to the specific quantities
mass, momentum and energy.

The equation for mass conservation is also called the continuity equation, while the
momentum conservation law is the expression of the generalized Newton law, defining
the equation of motion of a fluid. The energy conservation law is also referred to as
the expression of the first principle of Thermodynamics.
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When applied to a viscous fluid, the set of these equations are known as the Navier—
Stokes equations, while they are known as the Euler equations when applied to a
prefect, inviscid fluid.!

1.2 THE MASS CONSERVATION EQUATION

The law of mass conservation is a general statement of kinematic nature, i.e. indepen-
dent of the nature of the fluid or of the forces acting on it. It expresses the empirical
fact that in a fluid system, mass cannot disappear from the system, nor be created.
The quantity U is, in this case, the specific mass, U = p in kg/m?.

As noted above, no diffusive flux exists for the mass transport, which means that
mass can only be transported through convection. With the convective flux defined
by Fc=pv and in absence of external mass sources, the general integral mass
conservation equation then becomes

d L o
—/de—l—fpwdS:O (1.2.1)
ot Jo S

and in differential form following (1.1.3):

0 -
@ +V.-(pv)=0 (1.2.2)
ot
This equation is also called the continuity equation.

An equivalent form to (1.2.2) is obtained by working out the divergence operator,
leading to

ap

at+(§.%)p+p€-§=0 (1.2.3)

and introducing the material or total derivative:

-

dad 5% (1.2.4)

d
dr ot
leads to the following form for the mass conservation law

dp

V.-3=0 1.2.5
dl+p v ( )

Although both forms (1.2.2) and (1.2.5) are fully equivalent from mathematical point
of view, it will not necessarily remain so when a numerical discretization is performed.
Equation (1.2.2) corresponds to the general form of a conservation law since it is

Do not confuse a perfect fluid with the notion of a perfect gas: a perfect fluid is a fluid without
viscosity, while a perfect gas is defined by the gas law p = prT and can be considered as viscous or
not. On the other hand a perfect fluid can be a liquid or a gas.
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written in conservation form or in divergence form; while equation (1.2.3) is said to
be in quasi-linear or non-conservative form.

The conservative form in a numerical scheme is important, since if not properly
taken into account, a discretization of equation (1.2.5) will lead to a numerical scheme
in which all the mass fluxes through the mesh-cell boundaries will not cancel and
hence the numerical scheme will not keep the total mass constant. The importance
of a conservative discretization of the flow equations has also been stressed by Lax
(1954) who demonstrated that this condition is necessary in order to obtain correct
jump relations through a discontinuity in the numerical scheme. We will come back to
this crucial point in Chapter 5 where the finite volume method is presented and in later
chapters when discussing the discretization of Euler and Navier—Stokes equations.

Physical interpretation of the material derivative
The material derivative plays an important role in fluid mechanics and it is of interest
to deeply catch its physical significance.

If you look at a log of wood entrained by a river flow, you can view the change
in time of the log’s position due to the flow in two ways. If you keep looking at a
given fixed point, you will see the log pass in front of you and the change you will
notice after a short time step, is described by 9/d¢; which by definition gives the
variation per unit of time at a fixed point, with all space coordinates being kept fixed
(see Figure 1.2.1).

However, if you follow the log in its movement, you will see an additional variation
due to the motion of the fluid. Indeed, over a time interval A¢, point P will move to
point Q, ata distance P—Q) = Vp At and the value of an arbitrary quantity U has changed
by the difference (Up — Up).

From a Taylor series expansion, this difference is equal to

— o N >
Ug—Up = (PQ-V)Up+---= At(¥p - V)Up + - -- (1.2.6)

and the corresponding variation per unit of time is equal to (v - %)U .

Figure 1.2.1 Contribution to the material derivative.
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The total variation that you now can observe, when you follow the log in its motion
is obtained by adding this contribution to the local one 9/d¢. This sum is called the
material or total derivative and is defined by equation (1.2.4) .

Ascan be seen form equation (1.2.3) above, it is derived directly from the convective
flux and hence, as you also can notice from the arguments leading to equation (1.2.6),
the material derivative is another expression for the convection effects. We also use
the terminology convective derivative for the right-hand side of equation (1.2.6).

Some comment on the notations

For reasons of clarity and compactness of the equations, we use a vector notation for
the space gradients, and we recommend you to become familiar with it, as it also
allows a clear and direct physical interpretation. Indeed the operator (v - V) is a scalar
product between the velocity vector and the gradient operator, defined as

ex— +é— +ez—z (1.2.7)

where ¢; is the unit vector in the i direction. The operator v - vV is therefore equal to
the modulus of the velocity times the derivative in the direction of this velocity:

- 2 7| a
vl —
al

where 9/ is the differential arc length along the velocity direction, that is along the
streamline.

Algebraically, this operator is defined in a Cartesian (x, y, z) coordinate system,
with velocity components (u, v, w), as

d d d
_ 1.2.8
u8x+v8y+waz ( )

- 2 A
v-V =

On the other hand the divergence of the velocity, appearing in the third term of
equation (1.2.3), is directly obtained by the scalar product of the two vectors, in the
right order, leading to

9.5 A Ou 0v  ow 12.9
.v_8x+8y+82 (1.29)

Alternative form of a general conservation equation

The differential form of the general convection—diffusion conservation equa-

tion (1.1.9) can be written in another way. If equation (1.2.2) multiplied by u is

subtracted from the left-hand side of equation (1.1.9), we obtain

ou

o +pv-Vu=V-(kpVu)+ Oy +V - O (1.2.10)

0

or

u s o s o
pg =V Fp+0r+V-0s (1.2.11)
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1.3 THE

where Fp is the diffusive component of the flux vector. Again, the difference between
equations (1.2.10)or (1.2.11)and (1.1.9) lies in the conservative form of the equations.
Clearly equation (1.2.10) is not in conservation form and a straightforward discretiza-
tion of this equation will generally not conserve the property u in the numerical
simulation. Equation (1.2.10) is said to be in quasi-linear or non-conservative form.

It is also important to note that this conservation property is linked to the convective
term and that, in a fluid at rest, there is no difference between the conservative form
(1.1.9) and the non-conservative form (1.2.10).

Incompressible fluid
For an incompressible fluid, the density is constant and the continuity equation (1.2.2)
or (1.2.5) reduces to the divergence free condition for the velocity

V.v=0 (12.12)

MOMENTUM CONSERVATION LAW OR EQUATION OF MOTION

Momentum is a vector quantity defined as the product of mass and velocity, which
becomes when expressed per unit of volume, the product of density and velocity, i.e.

-

U

1>

oV (1.3.1)

and therefore the conservation law will have the general form given by equa-
tions (1.1.12) and (1.1.14).

The convective flux tensor is defined by equation (1.1.15) applied to the momentum
and becomes

Fec=p®7 (13.2)
and the flux contribution through the surface dS, takes the form:
Fc-dS = pv(-dS) = vdm (1.3.3)

where dr is the mass flow rate through dS, as defined by equation (1.1.6).
As with the mass conservation equations, it is assumed that no diffusion of momen-
tum is possible in a fluid at rest, and hence there is no diffusive contribution to the

flux tensor F.

In order to determine all the terms of the conservation equations, it is necessary to
define the sources influencing the variation of momentum. It is known, from Newton’s
law, that the sources for the variation of momentum in a physical system are the forces
acting on it. These forces consist of the external volume forces fe and the internal
Jorces fi, defined per unit mass.

Hence, the source term Qy of the conservation eguation (1.1.12) consists of the
sum of the external volume forces per unit volume pfe and the sum of all the internal
forces pf;.
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Figure 1.3.1 [nternal and external forces in the flow domain Q. The internal
forces cancel at all internal points due to the action = reaction rule and only the
surface points remain for the internal forces contributions.

The latter are dependent on the nature of the fluid considered and result from the
assumptions made about the properties of the internal deformations within the fluid
and their relation to the internal stresses.

Note that internal forces are the expression of the deformability of a fluid medium,
as opposed to a solid rigid body, in which the distance between two internal points
remains fixed during the body motion. In a fluid, two points initially very close to
each other can be found some time later far apart due to the deformations of the fluid
in its motion. This justifies the existence of internal forces, which are not present in
arigid body.

If you think about it, nobody has ever ‘seen’ a force, which is actually a very
abstract concept. What we only can see are the effects of forces, for instance the
displacement of an object due to gravitational forces, or the displacement of a pointer
on a measuring instrument under an electric potential difference indicating the pres-
ence of an electrostatic or electromagnetic force. In fact one of the more fundamental
assumptions of modern physics is to consider that when we observe a certain effect,
we assume the existence of a force behind it, as its cause.

This is exactly what is considered in fluid mechanics: since a fluid can sustain
internal deformations, a force, which is called the internal force of the fluid, must
cause these deformations (see Figure 1.3.1).

We refer you to your fluid mechanics courses for more details, and we will summa-
rize here only the main properties. The most important is the definition of the internal
force, acting on a surface element dS. In the general case, the internal force acting
on this surface element depends both on its position and on its orientation, defined
by the normal. Therefore it should be described mathematically by a tensor &, such
that the local internal force vector is written as

-

f=57 (1.3.4)

where E denotes the unit normal vector to the surface element. The internal stress
tensor o is a local property of the fluid and the internal force is, in addition, dependent
on the orientation through the definition (1.3.4).
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We will assume that the fluid is Newtonian and therefore, the total internal stress
tensor o is taken to be

F=_pl+7% (1.3.5)

where 7 is the unit ¢ tensor. Here, the existence of the isotropic pressure component pl
is introduced and T is the viscous shear stress tensor, equal to

e (2% 2% 5 136
i = W + 3( V)l] (1.3.6)

ox, i ox j

where u is the dynamic viscosity of the fluid, see for instance Batchelor (1970). A
kinematic viscosity coefficient v is also defined by v = u/p.

This relation is valid for a Newtonian fluid in local thermodynamic equilibrium.
Otherwise, the most general form for the viscous stress tensor is

an Bvl- > -
o=[n(5+ a}g) A (137)

Up to now, with the exception of very high temperature or pressure ranges, there is
no experimental evidence that the Stokes relation:

2U+3r=0 (1.3.8)

leading to equation (1.3.6), is not satisfied. Therefore we will not consider in the
following, the second viscosity coefficient A as independent from .

It is very important that you remember here that the viscous shear stresses
represent the internal friction force of fluid layers against each other.

By definition, internal forces cancel two per two in every point inside the volume.
Therefore, after summation over all the volume points, the remaining internal forces
within the volume 2 are those acting on the points of the boundary surface S, since
they have no opposite counterpart within the considered volume.

Hence, the internal forces act as surface sources with the local intensity & - dS and
the momentum conservation equation becomes, after taking the sum over the whole
surface:

a - NN 2, s = 2
—/pde—i—%pv(vdS):/pffde—i-%a-dS
ot Jo s Q s
=/pfed9—?§p.d§+f%-d§ (1.3.9)
Q s s

Note here that we could have considered from the start the internal forces as surface
sources, but we have chosen for this presentation to illustrate its physical background.
Applying Gauss’ theorem, we obtain

8 - = - - s = 2
7/ pvd9+/ V'(,ov®v)d§Z:/ ,QfedQ—i-?ga'dS (1.3.10)
ot Jo Q Q S



46 The Mathematical Models for Fluid Flow Simulations

Remark

which leads to the differential form of the equation of motion:

o - .=
%+V~(pv®v+p[—r):pfe (13.11)

An equivalent non-conservative form is obtained after subtracting from the left-hand
side the continuity equation multiplied by v:
dv v

v Vo2 - S -
P Ep—t+p(v-V)v:—Vp+V~r+pfe (1.3.12)

Pq P

where the material derivative d/d¢ has been introduced.

When the form (1.3.6) of the shear stress tensor for a Newtonian viscous fluid is
introduced in equations (1.3.11) or (1.3.12), we obtain the Navier—Stokes equations
of motion. For constant viscosity coefficients, it reduces to

v 2w - I G -
pg—l—p(V-V)v:—Vp—}—u[Av—l—gV(V-v)]—l—pfe (1.3.13)

For an incompressible fluid, satisfying the divergence free velocity condition (1.2.12),
the Navier—Stokes equation reduces to

v . 2 - L =
pg-l-p(v-V)v: —Vp+ nAv + pfe (1.3.14)
For an ideal fluid without internal shear stresses (i.e. for a perfect or inviscid fluid),
the momentum equation reduces to the Euler equation of motion:
dv v

y L o= > -
= VW = -V 1.3.15
P p8t+p(v )\ D+ pfe ( )

Observe that the convection term, under either the form of the second term of equa-
tions (1.3.11) or (1.3.13), is nonlinear even for incompressible flows. This is a
crucially important property, as this term is in particular responsible for the appear-
ance of turbulence. See Chapter 2 for an introductory presentation of turbulent flow
properties.

The vorticity equation
The equations of motion can be written in many equivalent forms, one of them being
obtained through the introduction of the vorticity vector ¢

> -

F=V X (1.3.16)

and the vector identity

=2
(G-V)G:V(%) — P x (V xP) (1.3.17)
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in the inertia term dv/dz. Equation (1.3.12) becomes

1

Al

wyoo - 1o o (V? 1-
— —(x)=—-Vp—-V|=|+-V-T+f (1.3.18)
ot P 2 P
This equation will be transformed further by introduction of thermodynamical rela-
tions after having discussed the conservation law for energy.
An important equation for the vorticity ¢ can be obtained by taking the curl of the
momentum equation (1.3.13). This leads to the Helmholtz equation:

N me e 221 = 1= 2\ = =
a—i%—(v-V);:(g-V)v—g(V-v)+Vpr7+Vx(fV-?)+V><fe (1.3.19)
J o

For a Newtonian fluid with constant kinematic viscosity coefficient v, the shear stress
term reduces to the Laplacian of the vorticity

- 1o _ -
V x (fV -?) = VAL (1.3.20)
P

The Reynolds number and viscosity as diffusion
Observe that, although derived from the contribution of the internal forces, the viscous
shear stress term V -  has all the features of a diffusion flux. Indeed, it satisfies all the
properties listed in Table 1.1.1 associated to diffusion, in particular the viscous terms
appear as second order derivatives, reducing to a Laplacian for an incompressible fluid,
as seen from equation (1.3.14). This confirms that the viscous stresses act as a diffu-
sion, with the kinematic viscosity as the diffusion coefficient, with dimensions m?/s.
The ratio between momentum convection and diffusion is given by the Reynolds
number. 1t is defined as the particular form of the Peclet number (1.1.11), with the
kinematic viscosity as diffusion coefficient:

VL
Re= - (1.3.21)
v

The Reynolds number plays a most important role in fluid mechanics.

1.4 THE ENERGY CONSERVATION EQUATION

It is known, from the thermodynamic analysis of continua, that the energy content of a
system is measured by its internal energy per unit mass e. This internal energy is a state
variable of a system and hence its variation during a thermodynamic transformation
depends only on the final and initial states.

In a fluid, the conserved quantity is the total energy defined as the sum of its
internal energy and its kinetic energy per unit mass v>/2. We will indicate by £ this
total energy per unit mass and pE the total energy per unit of volume, with

E=e+— (1.4.1)
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The first law of thermodynamic states that the sources for the variation of the total
energy are the work of the forces acting on the system plus the heat transmitted to
this system.

Considering the general form of the conservation law for the quantity pE, we have
a convective flux of energy Fe

) e
Fe = pv (e + ?> (14.2)

and a diffusive flux Fp, written as

.

Fp = —ypkVe (1.4.3)

since, by definition, there is no diffusive flux associated with the motion. The coeffi-
cient « is the thermal diffusivity coefficient and has to be defined empirically, together
with the dynamic viscosity . The coefficient y is the ratio of specific heat coefficients
under constant pressure and constant volume y =c,/c,.

Actually, this diffusive term (1.4.3) describes the diffusion of heat in a medium at
rest due to molecular thermal conduction. It is generally written in a slightly different
form, namely under the form of Fourier'’s law of heat conduction:

Fp=—kVT (1.4.4)

where T is the absolute temperature, and k is the thermal conductivity coefficient.
We have the relation

k = pcpic = e,/ Pr (1.4.5)
where Pr is the Prandtl number:
Pr=v/k = pucy/k (1.4.6)

With regard to the sources of energy variations in a fluid system, a distinction has to
made between the surface and the volume sources. The volume sources are the sum
of the work of the volume forces f; and of the heat sources other than conduction,
such as radiation, heat released by chemical reactions, designated by gp.

Hence we have, per unit volume, Oy = pfs - v + gH.

The surface sources QS are the result of the work done on the fluid by the internal
shear stresses acting on the surface of the volume considering that there are no external
surface heat sources,

Os=G-V=—pr+7-v (14.7)
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1.4.1 Conservative Formulation of the Energy Equation

Grouping all the contributions, the energy conservation equation in integral form,
becomes

0 I
—/ pEdQ—I—'(}g,oEv-dS
ot Jo s
=¢k§T'd§+/ (pﬁ,‘ﬁ—l—qH)dQ—i—f(gﬁydg (1.4.8)
N Q N
After transformation to volume integrals, the differential form of the conservation

equation for energy becomes

WE = e oo
%+V~(va)=v.(kVT)+v-(a.v)+W/-+qH (1.4.9)

where Wy is the work of the external volume forces
Wr=pfe-v (1.4.10)

Clarifying the term V. (G - v), and introducing the enthalpy of the fluid 2 = (e + p/p),
leads to the following alternative expression in differential form:

WE = o
%+V~(va—kVT—?-v):Wf+qH (14.11)

where the stagnation, or total, enthalpy H is introduced

=2 o2
H=e+Z4Z o+l —p 4
0

1.4.12
3 3 ( )

NS

1.4.2 The Equations for Internal Energy and Entropy
An equation for the variation of the internal energy e, can be obtained after some

manipulations (see Problem 1.2) and the introduction of the viscous dissipation
rate cy .

R R
ey =F-V)-v=—(T®T)
2u

8\/[
- .t 1.4.13
Tjj axj ( )
This leads to
8pe o R L o o o
— + V(o) =@ -VIp+V-(kVT)+ ey 4+ qu (1.4.14)

ot
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Observe that the term Wy, representing the work of the external forces, does not con-
tribute to the internal energy balance. Note also that this equation is not in conservation
from, since the pressure term is not under the form of a divergence.

An alternative form is obtained after introduction of the continuity equation:

de - L = -
pa =—p(V-V)+ V- -(kVT)+ ey +qn (1.4.15)
The first term is the reversible work of the pressure forces (and vanishes in an incom-
pressible flow), while the other terms are being considered as heat additions, with the
dissipation term &) acting as an irreversible heat source. This appears clearly by intro-
ducing the entropy per unit mass s of the fluid, through the thermodynamic relation

1 d
Tds =de +pd (7> —dn- 2 (1.4.16)
P P

The separation between reversible and irreversible heat additions is defined by
Tds =dg+dq (1.4.17)

where dg is a reversible heat transfer to the fluid, while dg’ is an irreversible heat
addition. As is known from the second principle of thermodynamics, dg’ is always non-
negative and hence in an adiabatic flow (dg = 0), with irreversible transformations,
the entropy will always increase.

Introducing the definition (1.4.16) in equation (1.4.15), we obtain

d ..
& 4V (YT + g (1.4.18)

T =
P

where the last two terms can be considered as reversible head additions by conduction
and by other sources. Therefore, in an adiabatic flow, gz = 0, without heat conduction
(k = 0) the non-negative dissipation term &y behaves as a non-reversible heat source.
Equation (1.4.18) is the entropy equation of the flow. Although this equation plays an
important role, it is not independent from the energy equation. Only one of these has to
be added to the conservation laws for mass and momentum. Note also that the entropy
is not a ‘conserved’ quantity in the sense of the previously derived conservation
equations.

1.4.3 Perfect Gas Model

The system of Navier—Stokes equations has still to be supplemented by the constitutive
laws and by the definition of the shear stress tensor in function of the other flow
variables. We will consider here only Newtonian fluids for which the shear stress
tensor is defined by equation (1.3.6). The thermodynamic laws define the internal
energy e, or the enthalpy h as a function of only two other thermodynamic variables
chosen between pressure p, specific mass p, temperature 7, entropy s or any other
intensive variable. For instance,

e=ep,T) (1.4.19)
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or
h=hp,T) (1.4.20)

In addition, the laws of dependence of the two fluid properties, the dynamic viscosity
coefficient u and the coefficient of thermal conductivity & are to be given in function
of the fluid state, for instance in function of temperature and eventually pressure.
In particular, the viscosity coefficient w is strongly influenced by temperature. For
gases, a widely used relation is given by Sutherland’s formula, for instance for air, in
the standard international, metric system

_ 1457372

= m10—"’ (1.4.21)

where T is in degrees Kelvin. Note that for liquids, the dynamic viscosity decreases
strongly with temperature, and that the pressure dependence of u, for both gases and
liquids is small. The temperature dependence of & is similar to that of u for gases
while for liquids, k is nearly constant. In any case the temperature and pressure
dependence of |1 and k can only be obtained, within the framework of continuum
mechanics, by experimental observation.

In many instances a compressible fluid can be considered as a perfect gas, even if
viscous effects are taken into account, and the equation of state is written as

p=prT (1.4.22)

where r is the gas constant per unit of mass, and is equal to the universal gas constant
divided by the molecular mass of the fluid. The internal energy e and the enthalpy 4
are only function of temperature and we have the following relations, taking into
account that

)4
= 1.4.23
p - T ( )
where
y=2 (1.4.24)

is the ratio of specific heat coefficients under constant pressure and constant volume:

1
e:chzilB

yeLe (1.4.25)
h=cT =272
=Tl =

y—1p

The entropy variation from a reference state indicated by the subscript 4, is obtained
from equation (1.4.16) as

T
s—sAchlnT——rlnE (1.4.26)
A P4
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or
S—sy=—rin—PPA__ (1.4.27)
(T/T )Y/ (v=1 o
Introducing the equation of state, we also obtain
s—si=cyln 2/PA (1.4.28)
(p/pa)"
The stagnation variables can be derived from the total enthalpy A
P v
H=E+==h+—=¢Tp (1.4.29)
P 2
where the total or stagnation temperature 79 is defined by
v y—1,.
Io=T+_—=T\(1+—M (1.4.30)
2¢p 2
The Mach number M has been introduced by
Wl
M== (1.4.31)
c
with
2 dp P
cc = — = er =y— (1.4.32)
ap /g P
being the square of the speed of sound. Similarly we have
E=¢T (1.4.33)

Considering that the transition of the fluid from static to stagnation state is isentropic,
we have for the stagnation pressure pg

T\ Y= -1 v/(y—1)
po _ (%’) - (1 n VTM2> (1.4.34)

and hence the relations (1.4.27) and (1.4.28) remain unchanged if the static variables
are replaced by the stagnation variables. For instance, we have

_ Po/Po4
s—854=—rln T/ Toa)/7D (1.4.35)
or
§— 54 = —rln —L0/Pos (1.4.36)

(H/H 4)Y/(v=1)
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Various other forms of the relations between the thermodynamic variables p, p, T,
s, e, h can be obtained according to the choice of the independent variables. As a
function of / and s we have

v/(y—1)
Po_ (%) e (1.4.37)
pa \hy

or from (1.4.27)

ANV
o <17> o)/ (1.4.38)
LA A

Many other relations can be derived by selecting other combinations of variables.

1.4.4 Incompressible Fluid Model

The Navier—Stokes equations simplify considerably for incompressible fluids for
which the specific mass may be considered as constant. This leads generally to a
decoupling of the energy equation from the other conservation laws if the flow remains
isothermal. This is the case for many applications that do not involve heat transfer.

For flows involving temperature variations, the coupling between the temperature
field and the fluid motion can occur through various effects, such as variations of vis-
cosity or heat conductivity with temperature; influence of external forces function of
temperature, such as buoyancy forces in atmospheric flows; electrically, mechanically
or chemically generated heat sources.

The mass conservation equation reduces in the case of incompressible flows to

V.y=0 (1.4.39)

which appears as a kind of constraint to the general time-dependent equation of
motion, written here in non-conservative form:

p% + (- %)\7 = —%p + AV + ,o]?e (1.4.40)
The system of equations for incompressible flow presents a particular situation in
which one of the five unknowns, namely the pressure, does not appear under a time
dependence form due to the non-evolutionary character of the continuity equation.
This creates actually a difficult situation for the numerical schemes and special tech-
niques have to be adapted in order to treat the continuity equation. This will be
introduced in Chapter 12.

An equation for the pressure can be obtained by taking the divergence of the momen-
tum equation (1.4.40), and introducing the divergence free velocity condition (1.4.39),
leading to

1 .
“Ap=-V @G-V +V-f (1.4.41)
P
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which can be considered as a Poisson equation for the pressure for a given velocity
field. Note that the right-hand side contains only products of first order velocity
derivatives, because of the incompressibility condition (1.4.39). Indeed, in tensor
notations, the velocity term in the right-hand side term is equal to (9;v;).(3;v)).

A1.5 ROTATING FRAME OF REFERENCE

A1.5.1

In many applications such as geophysical flows, turbomachinery problems, flows
around helicopter blades, propellers, windmills, we have to deal with rotating systems
and itis necessary to be able to describe the flow behavior relatively to a rotating frame
of reference. We will assume that the moving system is rotating steadily with angular
velocity @ around an axis along which a coordinate z is aligned.

Equation of Motion in the Relative System

Defining w as the velocity field relative to the rotating system and # =@ x 7 as the
entrainment velocity, the composition law holds

WA R= W4 e xF (1.5.1)

Since the entrainment velocity does not contribute to the mass balance, the continuity
equation remains invariant and can be written in the relative system:

¥, V.(pw) =0 (1.5.2)
ot

With regard to the momentum conservation law, observers in the two systems of

reference will not see the same field of forces since the inertia term dv/ds is not

invariant when passing from one system to the other. It is known that we have

to add in the rotating frame of reference two forces, the Coriolis force per unit

mass fc

fo = =2a x ) (15.3)
and the centrifugal force per unit mass fc

fo=—&x(@x7) =R (15.4)

where R is the component of the position vector perpendicular to the axis of rotation.
Hence, additional force terms appear in the right-hand side of the conservation law
(1.3.9) if this equation is written directly in the rotating frame of reference. These two
forces, acting on a fluid particle in the rotating system, play a very important role in
rotating flows, especially when the relative velocity vector w has large components
in the direction perpendicular to @.
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The conservation law for momentum in the relative system then becomes
0 N oo - - -
—/ pwdQ—l—%pw(w-dS) :/ pfedQ—i—/ ofc d2
ot Jo s Q Q
+/ pfcdsz—%p.diwg%-dfv (1.5.5)
Q s s

and the transformation of the surface integrals into volume integrals, leads to the
differential form:

3§—tw +V (oW @ W) = pfo — pd> x (@ x ) —2p(&> x W) — Vp+V-T (1.5.6)
The shear stress tensor T is to be expressed in function of the relative velocities. It is
considered indeed that the rotation of the relative system has no effect on the internal
forces within the fluid, since these internal forces cannot, by definition, be influenced
by solid body motions of one system of reference with respect to the other. A non-
conservative form of the relative momentum equation similar to equation (1.3.18)
can be obtained as

w L - 1o = (w* W l- — -
——wx)=—-Vp-V|——-—|+-V-T+f (1.5.7)
ot P 2 2 P

where the presence of the absolute vorticity vector is to be noticed.

A1.5.2 Energy Equation in the Relative System

The energy conservation equation in a relative system with steady rotation is obtained
by adding the work of the centrifugal forces, since the Coriolis forces do not contribute
to the energy balance of the flow.

In differential form, one obtains the following full conservative form of the equation
corresponding to equation (1.4.11):

5 i WIS U R A WP, D
(1.5.8)

where
Wi = pfe (1.5.9)

is the work performed by the external forces in the relative system.
In non-conservative form, equation (1.5.8) becomes, where time derivatives d/d¢
and d/0¢ are considered in the relative system:

d w2 p - - .
p—(h—i-?—?):a—];—l—V-(kVT)—i—V-(?-w)-i—Wfr-e]-i-CIH (1.5.10)
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The quantity

=2 =2
1:h+w7—”3:H—a-§ (1.5.11)

appearing in the left-hand side of the above equations, plays an important role, since
it appears as a stagnation enthalpy term for the rotating system. This term has been
called the rothalpy and it measures the total energy content in a steadily rotating
frame of reference.

A1.5.3 Crocco’s Form of the Equations of Motion

The pressure gradient term in the equation of motion can be eliminated by making
use of the entropy equation (1.4.16) written for arbitrary variations of the state of
the fluid. In particular, if the flow is followed in its displacement along its (absolute)
velocity line,

=

.. ¥
TVs=Vh— £ (1.5.12)

P

and introducing this relation in equation (1.3.18), we obtain

P L - - o
a—:—(vx§)=TVs—VH+ V.T+ (1.5.13)

<)

where the stagnation enthalpy A has been introduced. Similarly, in the relative system,
we obtain from equation (1.5.7):

ow L - N N o
g—(wx;)=rw—v1+ V.T+f (1.5.14)

1
0
where the rothalpy / appears, as well as the absolute vorticity Z.

The introduction of entropy and stagnation enthalpy gradients in the equation of
motions is due to Crocco (1937), and equations (1.5.13) and (1.5.14) reveal important
properties. A first observation is that, even in steady flow conditions, the flow will be
rotational, except in very special circumstances, namely frictionless, isentropic and
isoenergetic flow conditions, without external forces or with forces that can be derived
from a potential function where the corresponding potential energy is added to the
total energy H. An analogous statement can be made for the equation in the relative
system where the total energy is measured by /. However, since the absolute vorticity
appears in the relative equation of motion, even under steady relative conditions,
with constant energy / and inviscid flow conditions without body forces, the relative
vorticity will not be zero, but equal to (—2w). The relative motion is therefore never
irrotational but will have at least a vorticity component equal to minus twice the
solid body angular velocity. This shows that under the above-mentioned conditions
of absolute vorticity equal to zero, the relative flow undergoes a solid body rotation
equal to 2@ in opposite direction to the rotation of the relative system.
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A1.6 ADVANCED APPLICATIONS OF CONTROL VOLUME FORMULATIONS

In this section we introduce some advanced applications of the control volume
concept, which are of great importance in practical applications of CFD.

In external flows, CFD simulations are applied to predict the forces on the bodies,
in particular lift and drag for aircrafts and cars, particularly for racing cars, where
these quantities are crucial for the performance improvements. Reduction of drag
by very small amounts in aircrafts and racing cars, can make the difference between
acceptance or not, between winning and losing a race. Section 1.6.1 presents two
complementary methods to evaluate these forces from the CFD results.

Another important application is connected to cases with moving grids or moving
control volumes. This is presented in Section 1.6.2.

A1.6.1 Lift and Drag Estimations from CFD Results

Solid bodies inside control volume

If the volume €2 contains solid bodies, then an additional force (—f?) has to be added
to the right-hand side of equation (1.3.9), where R is the total force exerted by the
fluid on the body.

d R IR - - - - >
7/ pvdsz+7§ pi(-dS) = —7§p-ds+y§ t~dS+/ ofh dQ+H(—R) (1.6.1)
at Jo S S S Q

This equation is currently applied for the determination of lift force L and drag force
D on solid bodies, particularly for stationary flows.

For a surface S located in the steady far field, where the viscous shear stresses can
be considered as negligible, the sum of the stationary lift and drag forces are given
by the following relation, in absence of external forces:

y§ Pv(¥ - dS) + ygp dS=(-R)=-L-D (1.6.2)
S S

The lift and drag forces are obtained from the calculated left-hand side vector after
projection respectively along the direction perpendicular to the far-field incoming
velocity Uy, and in its direction (Figure 1.6.1).

If the control surface S is taken along the solid body surface Sy, where the velocity
field is zero due to the non-slip condition of viscous flows, then the lift and drag forces
are also defined by

k=2+b=?§p.d§+7§%-d§ (1.6.3)

These formulas are currently applied to determine these forces from computed flow
fields, by either integrating pressure and shear stresses along the solid walls, following
equation (1.6.3) or alternatively by integrating momentum and pressure along the
far-field enclosing surface, following equation (1.6.2).
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Solid body

Figure 1.6.1 Far-field control surface for lift and drag determination on an
enclosed solid body.

A1.6.2 Conservation Law for a Moving Control Volume

The general conservation law (1.1.1) was derived for a fixed control surface. However,
many flow situations involve the simultaneous presence of moving and fixed parts,
for which moving grids are required. In these cases, attaching a control volume to a
moving grid or a moving body requires to take into account the displacement of the
control surfaces. Representative examples are:

e flow around a train entering a tunnel, or between two crossing trains in opposite
directions;

e flow around an oscillating wing, where the oscillations can be forced or flow
induced in an aero-elastic interaction;

e the flow between an aircraft and a separating store;

e the flow of gases in internal combustion engines where the piston head has a
periodic motion with respect to the cylinder walls, modifying the available flow
volume accordingly;

e hydrodynamic of moving ships with free sea surface and wind induced waves.

In all these examples, two systems of reference are present simultaneously and
depending on the particular situation, fixed or deformable grids have to be attached
to the moving system and the conservation laws of mass, momentum and energy have
to take into account the effects of the relative motion between the two systems.

Scalar conservation law

Referring to Section 1.1.1, we consider now the volume €2 where each point of the

bounding surface S has a velocity v in the inertial reference system (see Figure 1.6.2).
Over a time interval At¢, the observer moving with the surface S will see a variation

of the content of U inside the volume determined by the sum of the fluxes and the

source terms, plus an additional contribution from the volume deformation caused

by the surface motion.
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Figure 1.6.2 Moving control volume with surface velocity.

Each surface element dS gives rise to a volume variation during the time interval A¢
equal to V,.dS At (see Figure 1.6.2) and therefore the content of U in 2 will increase
by an additional amount given by the surface integral ¢¢ U V,.dS At. Summing up all
contributions, we have

] au 0dQ2
— | UdQ = f —dQ+ / U——-
ot Jo o ot Q ot

U R >
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or, generalizing in this way equation (1.1.1) to a moving control volume:

U > - -
/—dQ+7§(F—U§S—QS)-dS:/QVdQ (1.6.5)
Q ot S Q

The time derivative is to be considered here in the moving system, that is for fixed
space coordinates attached to the volume 2.
ozl Az - . , L
The quantity F™®' = (F — UVy) can be considered as a relative flux vector, since it
contributes to the convective flux in (1.6.5).
Indeed, introducing the relative velocity

W=7 =% (1.6.6)



60 The Mathematical Models for Fluid Flow Simulations

a relative convective flux can be defined as
prel A 2 > =
Fe=Fc—-Uv)=Uw (1.6.7)
applying the definition (1.1.5) for the reference convective flux.
Vector conservation law
The conservation law for a vector quantity, such as momentum, for a moving control

surface is derived in the same way as above, introducing the relative convective flux
tensor, which generalizes equation (1.1.15):

rel

Foe 2Fc-U@v)=U® w (1.6.8)

leading to the following extension of equation (1.1.12):
8(7 — - N = - -
/—dQ—}—?g(F—U@vS—QS)-dS:/QVdQ (1.6.9)
Q Of s Q

The quantity U is defined in the inertial system, but the partial time derivative
is considered for fixed coordinates in the moving system.

If X is the local coordinate attached to a point in the reference system moving with
the velocity Vs and X the local coordinate in the reference inertial system, the relation

dx = dX + vy dr (1.6.10)

connects the two reference frames and defines also the relation between the local time
variations in the absolute and moving systems, as follows

ad ad L =
[—] = [—] + -V (1.6.11)
ot rel ot abs

This relation is obtained by applying the chain rule for differentials to an arbitrary
function U[X(X, t), {] with the definitions

ax ax R
[l} —7, and [} = % (1.6.12)
or |, ar |

based on equation (1.6.10).
These relations can be very useful in order to connect the time variation of the two
systems.

SUMMARY OF THE BASIC FLOW EQUATIONS

The equations derived in the previous sections are valid in all generality for any New-
tonian compressible fluid in an absolute or a relative frame of reference with constant
rotation. The various forms of these equations can be summarized in the following
tables. Table 1 corresponds to the equations in the absolute system, while Table 2
contains the equations written in the steadily rotating, relative frame of reference.



Table 1 The system of flow equations in an absolute frame of reference.

Differential
Equation
form Integral Conservative form Non-conservative form
Conservation P - o - dp -
- dQ+ @ pv-dS=0 —+V.-(p9)=0 —+pV-v=0
of mass 81/9'0 ipv " (ov) 3 TPV Y
Conservation 9 . o - dpv dv - - - -
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Table 2  The system of flow equations in a relative rotating frame of reference.

Differential
Equation
form Integral Conservative form Non-conservative form
Conservation 49 450 dp 3. 0 dp ST ith d 0 T
-dS = = — W= ith — = — +w -
of mass o p +j€pw 8t+ (o) = dt+p W W4 8t+w
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CONCLUSIONS AND MAIN TOPICS TO REMEMBER

e The fundamental properties of fluid mechanics are contained in the conservation
laws, which can be written in the very general form given by equation (1.1.1)
for a scalar quantity and by equation (1.1.12) for a vector quantity.

e To any conserved quantity, we can associate a flux (vector or tensor) describing
how that quantity is changed by the flow.

® You recognize an integral conservation law by the presence of the surface
integral of the fluxes, which is the only place where the fluxes appear. This
fundamental property is the key to any integral conservation law: fluxes may
never appear inside the volume, as they will not be distinguishable from volume
sources.

e For the differential form of the conservation law, equations (1.1.4) and (1.1.14),
fluxes appear exclusively under a divergence operator. This is how a differential
conservation law is recognized.

e In general the flux associated to a conserved quantity will contain a convec-
tive component, which is a/lways present in a fluid in motion, and a diffusive
component, which is present in a fluid at rest, but may not always exist.

e The convective flux appears as a first order derivative in space, while the diffusion
terms are always expressed by second order spatial derivative terms, reducing to
a Laplacian for constant diffusivity properties.

e The distinction between convective and diffusive fluxes is of crucial importance
and translates the fundamental differences in their physical interpretation, as
described in Section 1.1.2. Please go back to this section if you feel that these
differences are not fully clear to you.

e The laws of fluid mechanics are governed by the conservation equations for the
three basic quantities: mass, momentum and energy. Make sure that you have a
good insight into the form of these equations and of the significance of the various
contributions to the conservation of momentum (the equation of motion) and of
energy.

e Although equations can be written for other quantities, such as pressure, internal
energy, temperature, entropy, they nevertheless do not obey a conservation law,
as they have no associated flux.
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PROBLEMS

P.1.1 Develop the algebraic form for the gradient of the flux tensor appearing in the
vector conservation law (1.1.14), in Cartesian coordinates.
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P1.2

P1.3
P14
P.1.5

P.1.6

P1.7

P.1.8
P1.9
P1.10

With the flux components denoted by F;; with i, j =x, y, z, show that

0Fy  OF)  0F
ox ay dz

"qH

(V.F), =

Write out the two other components y and z.
Write out the Navier—Stokes equation of motion (1.3.11) explicitly for the three
components u, v, w in Cartesian coordinates.
Repeat it for the non-conservative form (1.3.12).
Obtain equation (1.3.13).
Prove equation (1.3.20).
Obtain the energy equations (1.4.14) and (1.4.15) for the internal energy e.
Hint: Introduce the momentum equation multiplied by the velocity vector
into equation (1.4.9).
Show that in an incompressible fluid at rest the energy equation (1.4.14) reduces
to the temperature conduction equation:

or - -
pey - = V.(kVT) 4+ qu

Show that the energy equation (1.4.11) reduces to a convection—diffusion bal-
ance of the stagnation enthalpy H when the Prandtl number is equal to one and
when only the contribution from the work of the shear stresses related to the
viscous diffusion of the kinetic energy is taken into account.

Hint: Assume constant flow properties, setting k = 1ACp in absence of external
sources, and separate the contributions to the term v. (T.¥) according to the

Jfollowing relations, valid for incompressible flows:

V.E) = 8 [ + dviv] = [,uV(vz/Z)] - [/L(v ). v]

Neglecting the second term, setting H =c,T + (¥2/2) leads to

9 -
g— + V.(pPH) = V.(uVH)
Obtain the entropy equation (1.4.18).

Derive equation (1.5.7).
Consider the integral mass conservation equation (1.2.1) for a permanent
(steady) flow, defined as a time-independent flow for which all partial time
derivatives vanish. Consider a channel of arbitrary varying section and two
cross-sections at an arbitrary distance apart. Show that the application of the
steady form of the integral mass conservation law leads to the constancy of the
mass flow rate through each cross-section.

Hint: select a control surface formed by the two cross-sections and the
channel walls in-between and apply the steady integral mass conservation law
together with the definition (1.1.6) of the element of mass flow rate.



Chapter 2
The Dynamical Levels of Approximation

OBJECTIVES AND GUIDELINES

The main objective of this chapter is to guide you through the different approxima-
tions that can be defined to reduce the complexity of the system of flow equations.
This process of simplification is based on physical considerations, connected to the
dynamical properties of fluid flows, hence the denomination ‘dynamical’ in the title
of this chapter.

In Chapter 1, we derived and discussed the fundamental form of a conservation law
and applied it to obtain the basic equations of fluid mechanics, known as the system
of Navier—Stokes equations, expressing the conservation of the three fundamental
quantities, mass, momentum and energy.

These equations contain many levels of complexity; the most significant being the
following:

e They form a system of five (in three-dimensional space) fully coupled time-
dependent partial differential equations for the five unknowns, velocity vector
(three unknowns), and two thermodynamic quantities, such as for instance pres-
sure and density, or pressure and temperature. The coupling occurs through the
velocity and density fields, possibly also through the temperature field, when
thermal effects are significant.

e Each of these equations is nonlinear. The nonlinearity of the flow equations is
not just a mathematical observation, as it has major consequences on the whole
of fluid mechanics:

— The dominant nonlinearity is provided by the convection term p(?}.%)?}, see,
e.g., the momentum equation under the form (1.3.13). This term is responsible
for the appearance of turbulence, which is a spontaneous instability of the
flow, whereby all quantities take up a statistical (chaotic) behavior.

— For compressible flows, the products of density and velocity represent another
nonlinearity, leading to the existence of shock waves in supersonic flows.
Through a shock, velocities, pressure, temperature, undergo a discontinuous
Jjump and, as we will see later on, these discontinuities are indeed exact
solutions of the nonlinear inviscid Euler equations.

— With non-uniform temperature fields, flow-thermal nonlinearities appear,
such as Bénard cells in shallow heated fluid layers, representative of com-
plex thermal convection phenomena, which are crucial, among others, in
weather forecasting.

— Other nonlinearities can appear in flows with free surfaces, such as the
breaking of waves that you can observe on the seashores, or during heavy
sloshing of a liquid in a tank. Also in two phase flows, the coalescence or

65



66 The Mathematical Models for Fluid Flow Simulations

breaking up of droplets or bubbles result from the nonlinear properties of
flows and nonlinearities of thermodynamic origin lead to phase changes, such
as evaporation, condensation.

— Nonlinearities lead to non-unique solutions. This has also major conse-
quences, under the form of the existence of multiple flow configurations for
the same initial and boundary conditions, resulting from bifurcations from
one flow state to another. Numerous examples of flow non-uniqueness and
of bifurcations have been observed, experimentally and numerically, and we
will show some examples in this chapter.

These complexities in fluid dynamics pose considerable challenges for CFD, in
particular for turbulent flows.

The link with the available computing power at a given time is illustrated in Fig-
ures I.1.4 and I.1.6, showing the evolution of the models used in industry, progressing
toward increased complexity, and hence reliability, due to the progress in available
computing power shown in Figure 1.1.7.

We will present in this chapter an overview of the most significant and most widely
used approximation levels. All these models, ranging from Direct Numerical Simu-
lation (DNS), Large Eddy Simulation (LES) and Reynolds Averaged Navier—Stokes
(RANS), to various forms of simplified treatment of the viscous terms, including
boundary layer approximations, down to inviscid models of the Euler equations and
the most simplified forms of potential flow, have been used, and several of them are
still in use, in various sectors of industry.

The Issue of the Time and Length Scales

The issue of the time and length scales of the description of the physical flow features
is critical to the world of simulation. The same flow will appear very different when
we reduce the scale at which we look at it. This is illustrated by the following example
of the experimental observation of a double annular jet, Figures 2.0.1 and 2.0.2. When
measurements are taken with a standard Laser Doppler Velocimeter (LDV) instru-
mentation, which averages the flow over a certain time scale, a steady averaged flow,
with three backflow regions appear, as seen on Figure 2.0.1. On the other hand, the
same flow seen with a Particle Image Velocimetry (PIV) laser sheet technique, which
takes an instantaneous snapshot of the flow in the plane of the laser sheet, shows a
highly unsteady flow with large-scale fluctuations, although the inlet conditions are
constant, Figure 2.0.2.

Look carefully at these figures, as they illustrate a fundamental issue in CFD
simulations. Before you consider a CFD application, you should evaluate and define
the time and length scales at which you want to model your flow system, in the same
way experimentalists choose their instrumentation in function of the level of details
they require.

This is the main objective of this chapter. It should help you develop a knowledge
and awareness of the best suited model for a given flow problem, by making a
proper balance between the acceptable approximations with respect to the reality,
and compatible with the computer capacity you have available.

We have chosen to illustrate the various approximations by typical results and
examples from CFD calculations performed at each level of approximation, as an
illustration of the type of computations achievable with the model being considered.



The Dynamical Levels of Approximation 67

Annular jets join

1... — Single
annular jet

. Annular
counter-rotating
vortices

** Single annular jet
50 100 150 200 — Central jet

Central toroidal vortex

(b)

U_mod

L 08

0.6 -

0.4

LEY

i 0.2

Figure 2.0.1 Double annular burner: (a) Exit view of the burner. (b) Experimental
color plot of axial velocity in the symmetry plane, obtained from LDV. (c)
Experimental streamlines of the flow with designation of specific position points,
related to the vortex structure, obtained from LDV. (d) Experimental vector plot of
the velocity field obtained from LDV data (for color image refer Plate 2.0.1). From
S. Geerts et al. (2005). Courtesy Vrije Universiteit Brussel (VUB).

(b)

Figure 2.0.2 Double annular burner: two successive snapshots taken with a PIV
laser sheet technique. Courtesy Vrije Universiteit Brussel.
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Table 2.0.1 The simplification process leading to the scalar, linearized model

equations.

Degrees of Full system of

complexity flow equations Reduction of complexity

Three-dimensional ~ Vector of minimum Reduce to one-dimensional space,

space five unknowns with three unknowns

Coupled system System of minimum Decouple the equations and reduce

five equations to a single scalar equation for one
unknown quantity
Nonlinearities Full nonlinear system  Linearize the scalar equations

Simplified Model Equations

Most of the approximate models retain, at various degrees, the basic complexities
of the Navier—Stokes equations, namely the three dimensions of space, the coupled
nature of the equations and the nonlinearities.

As you easily can imagine, it is hardly possible to develop and study the basics of
numerical discretization methods on such complex models. Hence, we need a second
level of simplification, reducing these three degrees of complexity to their essentials,
namely the fundamental effects of convection and diffusion, as seen in Section 1.1.2.
This leads us to simplified model equations, obtained by the following simplification
process, summarized in Table 2.0.1, which can be followed by going down along the
third column:

e Three-dimensional space, to be simplified to one-dimensional space.
e The coupled equations, to be decoupled to a single scalar equation.
e The nonlinearities, to be removed by a linearization assumption.

These mathematically based simplifications lead to sufficiently simple model
equations to guide the development of the basic numerical schemes for CFD.

They will form the basis for all of Chapters 4—10, while Chapters 11 and 12, will
focus on applying the methods developed on the model equations to ‘real’ approximate
flow models formed by coupled and nonlinear equations.

Note that the numerical schemes developed and analyzed on these simplified
model equations will ultimately be applied for the discretization of the full Navier—
Stokes equations.

The simplified models will be introduced in Chapter 3.

Content of this chapter

It is considered that the system of Navier—Stokes equations, supplemented by empir-
ical laws for the dependence of viscosity and thermal conductivity with other flow
variables and by a constitutive law defining the nature of the fluid, completely describes
all flow phenomena (Section 2.1).
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For laminar flows, no additional information is required and one can consider that
any experiment in laminar flow regimes can be accurately duplicated by computations.
However, and we could say unfortunately from the point of view of computational
fluid dynamics, most of the flow situations occurring in nature and in technology
enter into a particular form of instability called turbulence. Turbulence occurs in all
flow situations when the velocity, or more precisely, the Reynolds number, defined as
the product of representative scales of velocity and length divided by the kinematic
viscosity, exceeds a certain critical value. The particular form of instability generated
in the turbulent flow regime, is characterized by the presence of statistical fluctuations
of all the flow quantities. These fluctuations can be considered as superimposed on
mean or averaged values and can attain, in many situations, the order of 10% of the
mean values, although certain flow regions, such as separated zones, can attain much
higher levels of turbulent fluctuations.

Clearly, the numerical description of the turbulent fluctuations is a formidable task,
which puts extremely high demands on computer resources. With increasing com-
puter power, in both speed and memory, we are progressively able to simulate the
large-scale turbulent fluctuations, or even the small-scale turbulent motion, directly
on the computer from the time-dependent Navier—Stokes equations. This forms the
basis of the growing development of Direct Numerical Simulation (DNS). An esti-
mate of the computer requirements connected to this level of approximation can be
found already in Chapman (1979) and in the recent books of Sagaut (2001) and
Geurts (2004).

The computer requirements for DNS simulations of turbulent flows are out of reach
in the foreseeable future for industrial applications and it is therefore essential to resort
to approximations enabling the numerical description of turbulent flows in acceptable
computer CPU times. The highest approximation, with good prospects for reaching
the industrial stage in the near future is the approximation known as Large Eddy
Simulation (LES). This LES approach is similar to DNS, in its objective to simulate
directly the turbulent fluctuations, but restricted to the larger scales with the smaller
scales being modeled.

The next highest level of approximation is the Reynolds Averaged Navier—Stokes
(RANS) model, which is restricted to the computation of the averaged turbulent flow.
This requires the RANS equations to be supplemented by models for the Reynolds
stresses. These models can range from simple eddy viscosity or mixing length models
to transport equations for the turbulent kinetic energy and dissipation rates, or their
many two equation variants, or to still more complicated models solving directly the
transport equations for the Reynolds stresses. LES and RANS models are introduced
in Section 2.2.

Considering the various stages within the dynamical level of approximation, a first
reduction in complexity can be introduced for flows with small amount of separation
or back-flow and with a predominant mainstream direction at high Reynolds numbers.
This allows neglecting viscous and turbulent diffusion in the mainstream direction
and hence to reduce the number of shear stress terms to be computed, considering
that they have a negligible action on the flow behavior. This is the ‘Thin Shear Layer
Approximation’ discussed in Section 2.3.

Within the same level, we can situate the parabolic approximations for the steady
state Navier—Stokes equations. In these approximations, the elliptic character of the
flow is put forward through the pressure field, while all other variables are considered
as transported or as having a parabolic behavior (Section 2.4).
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The next level to be considered is the Boundary Layer Approximation referred to
in Section 2.5. As is well known, this analysis of the effects of viscosity by L. Prandtl,
is a most spectacular example of the impact of a careful investigation of the mag-
nitude of force components on the description of a flow system. For flows with no
separation and thin viscous layers, that is at high Reynolds numbers, a decoupling
of the viscous and inviscid parts of the flow can be introduced. The pressure field is
hereby decoupled from the viscous effects, showing that the influence of the viscous
and turbulent shear stresses is confined to small regions close to the walls and that
outside these layers the flow behaves as inviscid. This analysis, which was perhaps
the greatest breakthrough in fluid mechanics since the discovery of the Navier—
Stokes equations, showed that many of the flow properties could be described by
the inviscid approximation, e.g. determination of the pressure distributions, and that
a simplified boundary layer approximation allows for the determination of the viscous
effects.

When this influence or interaction is neglected, we enter the field of the inviscid
approximations, which allow generally a good approximation of the pressure field,
and hence of lift coefficient for attached external flows.

An intermediate level between the partially or fully viscous flow descriptions and
the inviscid approximation is the distributed loss model, used in confined flow prob-
lems, in particular in the simulation of multistage turbomachinery flows and shallow
water models in ocean dynamics. The overall effect of boundary layers and wakes is
expressed as a distributed friction force and the implications of this approximation are
presented in Section 2.6. At the same level, we can consider various viscid—inviscid
interaction models, which couple a boundary layer calculation, as a correction to an
inviscid simulation, in order to obtain an approximation of viscous effects, including
friction losses. Within the inviscid approximations, the model of the time-dependent
Euler equation is summarized in Section 2.7.

The potential flow model, restricted to non-rotational flows, is at a lower level of
approximation, due to the associated assumption of isentropic flow (Section 2.8).
This leads to a description of shock discontinuities which deviate from the Rankine—
Hugoniot relations and occasionally to problems of non-uniqueness. However, the
potential flow model is equivalent to the Euler equations for subsonic, non-rotational
flows.

The content of Chapter 2 is summarized in the chart of Figure 2.0.3.

2.1 THE NAVIER-STOKES EQUATIONS

The most general description of a fluid flow is obtained from the full system of
Navier—Stokes equations. Referring to Chapter 1, the conservation laws for the three
basic flow quantities (p, oV, pE) can be written in a compact form, expressing the
coupled nature of the equations:

-

P pv 0
8 N - = — -,

ot _ -
PoE pVH —T-v—kVT We +qu
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Input
u(T.p)
k(T.p) : .
Fluid constitutive Three-dimensional N Plreot.NumerlcaI
equation Navier—Stokes equations >| Simulation (DNS) of
turbulence
A
Input Large eddy simulation (LES-DES)
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Figure 2.0.3  Hierarchy of the different dynamical levels of approximation.

The above equation defines a (5 x 1) column vector U of the conservative variables:

P
P pu
U=|pv|=|pv (2.1.2)
pE| |PW
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and a generalized (5 x 3) flux vector F:

oV
F=| pw@v+pl—7 (2.1.3)
oVH —T -V —kVT

with Cartesian coordinates f', g, & each of these components being a (5 x 1) column
vector. The right-hand side contains the source terms and these can be grouped into
a (5 x 1) column vector Q, defined by

0

£ (2.1.4)
W + qn

Q
Il

The source terms express the effects of the external forces ﬁ, of the heat sources gy
and of the work performed by the external forces Wr = pfe - v. The group of equations
(2.1.1) takes then the following condensed form:

W - -
o TV EF=0 (2.1.5)

Expressed in Cartesian coordinates, we obtain the more explicit algebraic form:

U of g ok
U Y % 0 (2.1.6)
ot ox dy oz

or in an alternative condensed notation:
0,U + 0xf + dyg +3,h = Q

where u, v, w are the x, y, z components of the velocity vector and the flux vector
(2.1.3) is defined by its components /', g, & (subscripts indicate the corresponding
Cartesian components):

ou pv
P +p — Tux PVU — Tyy
f = puv — Ty g=| pPHp-1y
PUW — Txz oYW — Ty,
puH — (T -V)y — kd.T put — (T -v), — ko, T
pW
PWU — Tz
h = WY — Ty (2.1.7)
owr +p — 1z
owH — (T -V), — kd.T

Refer to Chapter 1 for a more detailed discussion, in particular for the association with
the Newtonian fluid model, the perfect gas model, or for the particular formulation
related to incompressible fluids.
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This system of Navier—Stokes equations is valid for any laminar or turbulent flow
of any fluid, defined by its constitutive equation relating the shear stresses to the other
flow variables.

2.1.1 Non-uniqueness in Viscous Flows

Non-unique solutions of the Navier—Stokes equations are known to exist for many flow
situations when some non-dimensional number, representing a measure of the balance
between various forces reach a critical value. For instance, the Bénard problem of a
fluid heated from below or the Taylor problem of the flow between concentric cylin-
ders, of which the inner one is rotating are known to generate more than one physical
state for the same physical conditions. It is interesting to observe here that the non-
uniqueness of the stationary Navier—Stokes equations has been proven theoretically
for these flow cases (see for instance Temam, 1977).

However, many other flow systems show this non-unique behavior, which is often
associated with additional complexities resulting from spontaneous unsteadiness,
such as bifurcations, symmetry breaking and route to chaos. The latter step is often
the road to turbulence.

We will illustrate this with two examples. The first one is less familiar as it describes
the flow induced by the temperature gradient of surface tension on a cylinder of liquid
bound by above and below by two surfaces at different temperatures. It is known as
a liquid bridge and the flow phenomenon is known as the Marangoni effect.

The second example is the well-known flow over a cylinder with a uniform steady
incident velocity. The resulting flow is subject to the appearance of vortex shedding,
known as the Von Karman street, but many levels of additional complexities appear
when either compressibility and/or 3D effects are taken into consideration.

The non-uniqueness property of the viscous flows, connected to the spontaneously
generated unsteadiness, pose considerable problems to the numerical simulation and
represent one of the main challenges in CFD. The flow can undergo sudden changes in
its unsteady behavior, or be subjected to bifurcations, route to chaos and other effects
typical of nonlinear systems. Very high accuracy, at the level of the discretization
schemes, as well as in the treatment of the boundary conditions are required in order
to be able to recover numerically multiple solutions, when they exist; while avoiding
spurious states of numerical origin.

2.1.1.1 Marangoni thermo-capillary flow in a liquid bridge

A liquid bridge is a small cylinder of liquid, of height /# and diameter d, contained
between two endplates at different temperatures, but with a free external surface,
held together by surface tension. The Marangoni thermo-capillary effect designates
the flow system that appears induced by a temperature gradient of the surface tension
and is of interest in float-zone crystal growth technology.

In the above equations, the external surface forces are defined by

]?eS = okii + Vo (2.1.8)
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The first term on the right-hand side represents the normal component of the surface
tension o, function of temperature, for a surface curvature «, directed along the normal
direction n. The second term is the tangential component of the surface tension
gradient, which appears if the surface tension is not uniform, in particular due to
temperature variations.

An associated heat source is generated by the work of these capillary forces,
defined by

Wis = ofes - Vs (2.1.9)

where the subscript S indicates values defined on the peripheral surface.

The surface tension forces hold the column of fluid together between two disks
maintained at different temperatures, and a convection pattern is generated by the sur-
face tension gradients induced by the temperature gradient on the interfacial surface.

A non-dimensional Reynolds number is defined as

hAT
Re — lor|

o (2.1.10)

h is the height of the liquid bridge, AT is the imposed temperature difference between
the endplates, o7 = —do/dT is the negative rate of change of surface tension with

temperature.
The Marangoni number is defined by multiplication with the Prandtl number
Pr=v/k:
hAT hAT
Ma = Re. pr — \OTAT v _ |or|hAT 2.1.11)

o2k PVK

The flow structure depends on three non-dimensional parameters, Re, Pr and the
aspect ratio of the liquid bridge, 4 =2h/d.

For small temperature differences AT between the upper (hot) and lower (cold)
endplate, that is for low values of the Marangoni number Ma, a steady axisymmetric
flow is being generated by the temperature-dependent surface tension forces. This
steady flow is characterized by two toroidal vortices and by a temperature field with
a cold point at the lower corner. Figure 2.1.1 shows the liquid bridge configuration
and the steady flow for half the cylinder, where the central limit of the velocity and
temperature plots is the vertical symmetry axis of the liquid bridge.

When the temperature difference, that is the Marangoni number increases, the flow
structure changes completely as the velocity and temperature fields become unsteady,
with increasingly complex flow configurations.

The following flow structures are observed; Dinescu and Hirsch (2001), Hirsch
and Dinescu (2003):!

e A first spontaneous unsteadiness appears under the form of a standing pulsating
wave, with 2, 3 or more modes, depending on the Prandtl number and the aspect

! The another would like to thank Cristian Dinescu for putting together these figures extracted from
the CFD animation.
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Figure 2.1.1 (a) Liquid bridge configuration and (b) Marangoni effect. Steady
axisymmetric flow and temperature pattern shown on half of the cylinder, the axis of

symmetry is the internal vertical line in each of these figures. From Dinescu and
Hirsch (2001).

ratio. Figure 2.1.2a shows four snapshots of the associated temperature and
velocity fields, for m =2 mode.
e This pulsating mode is not permanent and after a certain time transforms itself
to a traveling mode, which remains unchanged over time (Figure 2.1.2b).
With further increasing Marangoni numbers, a succession of nonlinear
generated phenomena appear:

— Symmetry breaking of the flow configuration first via a period doubling as
shown on (Figure 2.1.2c¢).

— At different conditions, another route to chaos is identified, showing a quasi-
periodic state with frequency doubling. Inspecting Figure 2.1.2d, we can see
the pattern of the temperature disturbance field with the three cold (blue)
spots placed near the free surface and the three hot spots located near the
vertical axis of the liquid bridge. The loss of symmetry and the two fre-
quencies of the traveling waves captured by the numerical simulation are
confirmed by the experiments of Schwabe (2001), identified as quasi-periodic
states.

— Route to chaos: with increasing Marangoni numbers an increasingly chaotic
motion starts to appear.

These results are confirmed by experimental observations and other simulations.
The interested reader can consult the following additional references to learn more
about these fascinating phenomena: Velten et al. (1991), Frank and Schwabe (1997),
Shevtsova and Legros (1998), Kuhlmann (1999), Leypoldt et al. (2000), and Zeng
et al. (2004).
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Figure 2.1.2  Liquid bridge and Marangoni effect. Representation of various
unsteady and symmetry broken solutions for velocity and temperature Perturbation
fields. Each group of four figures represents four snapshots of the corresponding
unsteady peturbation field (for color image refer Plate 2.1.2). From Dinescu and
Hirsch (2001), Hirsch and Dinescu (2003).
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2.1.1.2 Flow around a circular cylinder

The flow around a circular cylinder generated by a horizontal incident uniform steady
velocity field Uy, is one of the simplest possible setups. Nevertheless, the resulting
flow is of great complexity, known to generate a spontaneous unsteadiness under the
form of a periodic vortex shedding.

Two-dimensional configuration

For Reynolds numbers Re = U, D/v below 40 the flow is steady with a symmetrical
backflow region behind the cylinder (Figure 2.1.3).

However, above this critical value 0f 40, a spontaneous unsteadiness appears, under
the form of a periodic vortex shedding. This can be explained as follows: the backflow
regions result from the separation of the flow at positions around 90° and form a
symmetrical pattern. The viscous boundary layers are regions with high vorticity and
it is known that the intensity of the vortices increases with Reynolds number. At
the separation points of the upper and lower parts of the cylinder, the vortices are
equal and have opposite signs, such that a symmetrical flow pattern arises. When
the vortex intensities grow, a small perturbation, which would give to the upper
vortex for instance a slightly larger value than the lower one, would influence the
flow on the lower part and attract the lower vortex. This breaks the symmetry with
the consequence that the upper vortex is not balanced anymore by the lower one
of opposite sign. This vortex is then convected by the flow away from the cylinder
surface, leaving the lower vortex as the dominating one. This lower vortex attracts
the flow to the lower side and after being at his turn convected by the flow away from
the surface, handles back the dominating role to the upper vortex. This results then
in a periodic motion, known as the periodic Vor Karman street of shed vortices. The
frequency of this effect increases with Reynolds number.

This is illustrated in the series of Figure 2.1.4 displaying pictures at Re = 100, at
different time instants of the progressive generation of the vortex shedding, from
http://www.idi.ntnu.no/~zoran/NS-imgs/lics.html

Circular cylinder at Re=26—experimental image
(Van Dyke—An Album of Fluid Motion)

Figure 2.1.3  Visualizations of the 2D flow around a cylinder at Re = 26, showing
the symmetric pattern of the separated regions, from Van Dyke (1982); compared
with a numerical simulation from http://www.idi.ntnu.no/~zoran/NS-imgs/lics.html
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Figure 2.1.4 Visualizations of the flow around a cylinder at Re = 100, showing the
progressive generation of the vortex shedding, at different time instants. From
http://www.idi.ntnu.no/~zoran/NS-imgs/lics.html

What this actually means is that above the critical value of the Reynolds number,
there is no steady flow configuration anymore, although the cylinder and the incident
conditions remain fixed and constant.

If we consider in addition a high Mach number flow, an additional complexity
appears, due to the interaction with compressibility effects.
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Compressibility effects and non-uniqueness

The influence of the compressibility on the flow around the cylinder is summa-
rized in the beautiful series of pictures shown on Figure 2.1.5 taken at the Institut
de Mécanique des Fluides de Lille, France, at different Mach numbers and at a
Reynolds number close to 10%; see Dyment (1982). With increasing Mach number
and intensity of the acoustic waves, the interaction and the coupling between com-
pressibility effects, vortex shedding and separation on the cylinder becomes more
pronounced. A strong shock is gradually generated downstream of the cylinder, and
a steady wake of increasing length appears for Mach numbers from 0.70 to 0.90,
with a periodic vortex shedding downstream of the shock. Above a certain value of
Mach number lambda shocks appear and when they join, no disturbances can travel
upstream preventing the coupling between the wake and the vortex street. This can
lead to a stationary regime such as observed in certain circumstances at M = 0.98.
The flow visualizations show another important phenomena, namely non-uniqueness
under the form of the appearance of more than one flow regime at certain values of
Mach number and Reynolds number. Two unsteady flow configurations can be dis-
tinguished at M = 0.8 while at M = 0.98 both an unsteady and a steady flow regime
can occur.

Three-dimensional effects

When the flow around the cylinder is analyzed, experimentally or numerically, taking
into account its spanwise dimension and length, new phenomena appear, character-
ized by the presence of streamwise vortices, with non-unique properties and additional
nonlinear interactions leading to frequency doubling effects and route to chaos with
increasing Reynolds numbers. These effects were initially found experimentally by
Williamson (1998a, b, 1989, 1992). See also Williamson (1996a, b) for a general
overview. They have been confirmed and analyzed in depth in a series of numerical
simulations by M. Braza and her coworkers, where the detailed mechanisms of the
two modes have been clearly identified (Persillon and Braza (1998) and Braza et al.
(2001)).2

Figure 2.1.6 shows the experimental data for the variation of the Strouhal num-
ber St=/D/Us, where f is the frequency of the vortex shedding, with Reynolds
number. This figure shows the presence of a first bifurcation, with two possible
states between Re = 180 and 190 and a second bifurcation, with a region of multiple
solutions between Re =230 and 280. The upper curve of points corresponds to two-
dimensional vortex shedding and there is a marked difference in the Strouhal number
variation between the two- and three-dimensional cases, due to the strictly three-
dimensional character of the two discontinuities and of their intermediate region.
These multiple solutions correspond to two different 3D vortex structures, referred
to as modes A and B in Figure 2.1.6 from Williamson (1996a, b).

The numerical simulations, supported by the experimental evidence, allows an
in-depth analysis of the bifurcation mechanisms between the modes A and B.

2 The author gratefully acknowledges the friendly support of Prof. Marianna Braza in the analysis of
this section and for providing the quoted figures.
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The two regimes at M=0.98; one non-stationary, the other stationary

Figure 2.1.5 Visualizations of the flow around a cylinder for various Mach
numbers at a Reynolds number of 10°. Cylinder H =8 mm; UH Jv=10°
shadowgraphs 0.3 ms. Courtesy A. Dyment and M. Pianko, Institut de Mécanique
des Fluides de Lille, France.
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different modes and a lower path with dislocations. Experiments reported by
Williamson (1996a, b) (detailed in the legend); * direct simulation by the present
study. From Braza et al. (2001).
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Figure 2.1.7 Spanwise undulation of the main vortex rows and streamwise
vortices, at Re =220, shown by iso-contours of vorticity components. (b) Spanwise
experimental flow visualization, provided by Williamson (1992). The frame shows
correspondence to the computational region explored (for color image refer Plate
2.1.7). From Persillon and Braza (1998). Courtesy M. Braza. IMFT, Toulouse.

Figure 2.1.7, from Persillon and Braza (1998) shows the A configuration at a
Reynolds number of 220. The figure displays the three-dimensional vortex structure
through the iso-contours of the transverse and streamwise vorticity components. A dis-
tortion of the main vortex filaments is seen along the span, with the presence of
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Figure 2.1.8 Modification of the spanwise vortex structures as Reynolds number
increases; passage to mode B; (a) Re=270; (b) Re = 300. (c) Spanwise
experimental flow visualization, provided by Williamson (1992, 1996 a, b). The
frame shows correspondence to the computational region explored (for color image
refer Plate 2.1.8). From Persillon and Braza (1998). Courtesy M. Braza. IMFT,
Toulouse.

streamwise vortex structures. This pattern is compared with experimental visualiza-
tions by Williamson (1992). At higher Reynolds numbers, we observe a modification
of the spanwise vortex structures and a transition to mode B, as seen from Figure
2.1.8 where Figure 2.1.8a corresponds to Re =270 and Figure 2.1.8b to Re =300.
Figure 2.1.8¢ shows the spanwise experimental flow visualization, from Williamson
(1992, 1996a, b).

The mechanism behind the bifurcation between modes A and B is related to a
dislocation mechanism of the transverse vortices, as shown by the simulations per-
formed by Braza et al. (2001). Details of this mechanism, involving a fundamental
frequency reduction and route to chaos are summarized in Figure 2.1.9, showing the
transition steps from mode A to mode B. The figure displays the modification of the
spanwise wavelengths, as well as the junction between two adjacent Von Karman
vortex rows, that illustrates the vortex dislocation pattern with an increase of the
chaotic components.
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Figure 2.1.9 Spanwise and streamwise iso-vorticity contours showing mode A
formation and the transition to the vortex dislocations pattern at Re = 220 (for
color image refer Plate 2.1.9). From Braza et al. (2001). Courtesy M. Braza. IMFT,

Toulouse.

2.1.2 Direct Numerical Simulation of Turbulent Flows (DNS)

A fundamental property of fluid mechanics is the appearance of turbulence.

Any flow system will remain laminar up to a certain critical value of the Reynolds
number V- L/v, where V and L are representative values of velocity and length
scales for the considered flow system and v is the kinematical viscosity (expressed
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in m?/s). Above a critical value of the Reynolds number, all flows become tur-
bulent. They are then characterized by the appearance of statistical fluctuations of
all the variables (velocity, pressure, density, temperature, etc.) around mean values.
These fluctuations are a form of instability of the flow system, as a consequence
of the nonlinear convection terms. Hence, they cannot be described anymore in a
deterministic way.

However, they could be computed numerically in direct simulations of turbulence,
DNS or at a lower level of approximation by the ‘large eddy simulation’ (LES)
approach whereby only the small-scale turbulent fluctuations are modeled and the
larger-scale fluctuations are computed directly.

The reader can find a review of the state of art of direct numerical simulation
of turbulence in Jimenez (2003), B Geurts (2004) and in Rogallo and Moin (1984)
for a historical perspective. Although this approach requires considerable computer
resources, it has already led to very informative results on the fundamental physics
of turbulence.

Direct Numerical Simulation of Turbulent Flows (DNS) has as objective to simulate
on computer the whole range of the turbulent statistical fluctuations at all relevant
physical scales. This is a formidable challenge, which grows with increasing Reynolds
numbers, since the size of the smallest turbulent eddies is inversely proportional to
Re3/4, the well-known Kolmogorov scale related to the turbulent dissipation. If we
wish a resolution of # points per unit length of the smallest eddy, the total number
of mesh points required, and the number of arithmetic operations, will scale with
n3 -Re”/4. As the Navier—Stokes equations have to be integrated in time, with a
time step determined by the smallest turbulent time scales, which are proportional
to Re3/4, the total computational effort for DNS simulations is proportional to Re3
for homogeneous turbulence! Wall flows and other inhomogeneous cases, are even
more expensive, since the mesh should adapt to the resolution scales of the near-wall
structures.

This means that increasing the Reynolds number by a factor 10, requires an increase
in the computational power of at least a factor 1000, and by a factor 10%/4 =178 for
the memory requirements.

Therefore, DNS simulations for realistic Reynolds numbers of the order of
10°—107, as found in many industrial external flows around aircrafts, cars, build-
ings, or internal flows in engines, pumps, compressors, turbines, etc. are out of reach
for a long time, based on the current and projected computer capacities.

Nevertheless, DNS is widely applied as a basic research tool to better understand
the fundamental mechanisms of turbulence, with the objective to establish a database
of information to be used to improve lower level approximations such as LES or
turbulence models for RANS simulations (Section 2.2).

Some of the more advanced DNS simulations are being performed by J. Jimenez
and his coworkers at the University of Madrid and University of Illinois (in par-
ticular R.D. Moser). See for instance Jimenez (2004), Jimenez et al. (2004), Del
Alamo et al. (2004, 2006), Hoyas and Jimenez (2006) and Flores and Jimenez
(2006).

Their fundamental DNS simulations of the turbulent flow in a simple channel
provide a wealth of information on the basic turbulent properties at all scales. It is not
the place here to enter into a detailed discussion on these properties, but Figures 2.1.10
and 2.1.11 provide representative examples of DNS simulations, under the form of
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Figure 2.1.10 Instantaneous view of the turbulent vortices colored with their
distance to the wall (red is closest to the wall and yellow is at the center of the
channel. Only 1/4 of the channel is shown (full length, half-width and half-height),
and the flow direction is from bottom-left to top-right (for color image refer

Plate 2.1.10). From del Alamo et al. (2004). Courtesy J. Jimenez and coworkers.

snapshots of the instantaneous turbulent fluctuation field and its underlying vortex
structure.’

The two figures correspond to simulations performed at two different
Reynolds numbers. Figure 2.1.10 has been obtained at a Reynolds num-
ber based on the channel width and the center line velocity of 47,500 for
a friction Reynolds numbers Rey,, (based on the channel half-width and the
friction velocity)=950. The simulations have been performed on a grid of
NX x NY x NZ=1048 x 385 x 1556 =1,226,874,880 mesh points. The case was
run on several computers belonging to DoE in the US or at San Diego, mostly by
the group of Prof. R.D. Moser, then at University of Illinois in Urbana. It took about
10° processors hours, usually on 384 SP2/SP3 processors. The insert in the figure
allows observing the structure of single vortices, while the complexity of the flow is
highlighted in the main part of the figure.

Figure 2.1.11 shows a similar view of the instantaneous vorticity field at a Reynolds
number based on the channel width and the center line velocity of 100,000 (Ret,, based
on the channel half-width and the friction velocity =2000). The simulations have
been performed ona grid of NX x NY x NZ=4096 x 633 x 3072 =17,964, 983,296
mesh points, with typical computation times of 6.10° CPU hours on the ‘Mare Nos-
trum’ supercomputer in Barcelona on 2100 processors for about 6 months. This
is the highest Reynolds number up to date applied for DNS simulations, and we

3 The author is grateful to Prof. Javier Jimenez, for the information on his work and on the shown
figures, as well as to J.C. Del Alamo and O. Flores, and for permission to publish them.
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Figure 2.1.11 [nstaneous realization of a complex clustering of vortices in a
turbulent channel flow at a Reynolds number of 100,000 (Retau = 2000). The flow is
from left to right and the vortices are colored with their distance to the wall (blue is
near the wall while red is far from the wall) (for color image refer Plate 2.1.11).
From Hoyas and Jimenez (2006). Courtesy J. Jimenez and coworkers.

recommend the cited papers to the interested reader for detailed analysis of the
turbulence properties that emerge from these unique simulations.

Another important domain of application of DNS is the simulation of laminar—
turbulent transition, of which many fundamental features are still unknown. DNS
offers a significant way of investigating the complexity of transition phenomena and
Figure 2.1.12 shows a snapshot of a DNS simulation performed by J. Wissink and
W.Rodi of the University of Karlsruhe, with a mesh of 56 million points, ata Reynolds
number of 60,000. The simulations investigate the effects of an external turbulence on
the transition, comparing a laminar incoming separation bubble with no turbulence
with an incoming 7% turbulence intensity.

2.2 APPROXIMATIONS OF TURBULENT FLOWS

The applications of CFD to real life flow systems, in nature or in technology, require
the ability to handle turbulent flows, as these are the most widely encountered situa-
tion. Hence we need to take into account the effects of turbulence on the mean flow
and this requires approximate models, as DNS is not a short-term option.
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Figure 2.1.12  Snapshots of a DNS simulation at a Reynolds number of 60,000,
showing the effects of an external turbulence on the transition, comparing the
vorticity field of a laminar incoming separation bubble with no turbulence and with
7% turbulence intensity (for color image refer Plate 2.1.12). Courtesy J. Wissink
and W, Rodi, University of Karlsruhe.

Two families of models are presently available: one family, called Large Eddy
Simulation (LES) is of the same category as DNS, in that it computes directly the
turbulent fluctuations in space and time, but only above a certain length scale. Below
that scale, called the subgrid scale, the turbulence is modeled by semi-empirical laws.

The other family, called the Reynolds Averaged Navier—Stokes (RANS) model,
ignores the turbulent fluctuations and aims at calculating only the turbulent-
averaged flow. This is currently the most widely applied approximation in the CFD
practice.

The hierarchy between these three levels of turbulence modeling is summarized in
Figure 2.2.1, which shows the turbulent energy spectrum in function of wave number
k, and the limits of the range of application of LES and RANS models. Remember
that the wave number is defined as k = 27/A, where A is the wavelength.

2.21 Large Eddy Simulation (LES) of Turbulent Flows

The equations describing LES models are obtained from the Navier—Stokes conser-
vation laws by a filtering operation whereby the equations are averaged over the part
of the spectrum that is not computed, that is over the smaller length scales (that is the
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Figure 2.2.1 Energy spectrum of turbulence in function of wave number k, with
indication of the range of application of the DNS, LES and RANS models. The
length scales It and I are associated with the LES and RANS approximations,
respectively (for color image refer Plate 2.2.1). Courtesy C. Fureby (FOI, Sweden).

high wave number region). In practice, the lowest identified scales are related to the
mesh size and therefore the LES models are often referred to as subgrid scale models.

Since the remaining larger-scale turbulent fluctuations are directly simulated, the
computational requirements on LES simulations are still very high. It can be shown
that for a resolution of # points per unit length of the simulated eddies, the number
of arithmetic operations will scale with n> - Re’/2 and taking into account the time
integration, the total computational effort for LES simulations is proportional to
Re”/4. This is significantly lower than the DNS requirements, but still excessively
high for large Reynolds number applications, particularly for wall-bounded flows.

A domain where LES is clearly coming close to practical industrial applications is
the modeling of combustion phenomena.

For many applications involving wall-bounded flows and attached boundary layers,
various hybrid combinations of LES and RANS are being considered, whereby the
RANS approximation is kept in the regions where the boundary layers are attached
to the solid walls. A recent account can be found in Haase et al. (2006).
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2.2.2 Reynolds Averaged Navier—Stokes Equations (RANS)

The most widely applied approximation for industrial applications of CFD is the
approximation whereby the turbulent equations are averaged out, in time, over the
whole spectrum of turbulent fluctuations. This leads to the so-called ‘Reynolds
Averaged Navier—Stokes equations’ which require, in addition, empirical or at
least semi-empirical information on the turbulence structure and its relation to the
averaged flow.

This approach goes back to O. Reynolds himself.

Biographical note

Osborne Reynolds (1842—1912) was born in Belfast and went to school at Dedham
(Essex) where his father (a priest in the Anglican church, but having an academic
degree from Cambridge university) was headmaster. He studied mathematics at
Cambridge, graduatingin 1867. In 1868, Osborne Reynolds became the first professor
of engineering at Owens College in Manchester. That College is a predecessor of
the Victoria University of Manchester, merged with UMIST in 2004 and now the
University of Manchester.

Before and after his university studies, O. Reynolds was shortly employed by engi-
neering firms, which marked his interest for phenomena encountered in practice. He
wrote about himself: ‘From my earliest recollection I have had an irresistible liking
for mechanics and the physical laws on which mechanics as a science is based’, as
reported in Lamb (1912—1913).

He initially worked on a wide range of phenomena: condensation and heat transfer
between solids and fluids, the effect of rain and oil in calming waves at sea, the
refraction of sound by the atmosphere, as well as various engineering works: the first
multi-stage turbine, a laboratory-scale model of the Mersey estuary that mimicked
tidal effects.

By 1880 O. Reynolds became interested by the detailed mechanics of fluid motion,
especially the sudden transition between direct and sinuous flow in circular pipes
which he found occurred when UD/v = 2000. He published his first experimental
observations of turbulent flows and laminar—turbulent transition in 1883, obtained
by injecting an ink tracer into water flowing in a circular glass pipe, and varying the
diameter and the velocity. His paper was called: ‘An experimental investigation of the
circumstances which determine whether the motion of water in parallel channels
shall be direct or sinuous and of the law of resistance in parallel channels’. What is
known today as the ‘Reynolds number’, namely the combination UD/v, appears in this
work. He further developed the theoretical basis of the RANS models and presented his
theoretical ideas to the Royal Society in 1894, which included ‘Reynolds averaging’,
Reynolds stresses and the first derivation of the turbulence energy equation.

O. Reynolds made also significant contributions to of the theory of lubrication, and
he is widely recognized as the founder of the science of tribology (friction, lubrication
and wear).

H. Lamb, who new him well, wrote about the personality of Osborne Reynolds: ‘The
character of Reynolds was like his writings, strongly individual. He was conscious
of the value of his work, but was content to leave it to the mature judgment of the
scientific world. For advertisement, he had no taste, and undue pretension on the
part of others only elicited a tolerant smile. To his pupils he was most generous in
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the opportunities for valuable work, which he put in their way, and in the share of
cooperation. Somewhat reserved in serious or personal matters and occasionally
combative and tenacious in debate, he was in the ordinary relations of life the most
kindly and genial of companions’.

A lively account of his particular teaching habits is cited by R.A. Smith (http://
www.queens.cam.ac.uk/Queens/Record/1 997/History/Reynolds.html): Reynolds had
a characteristically uncompromising style of both written and oral communication,
the latter well illustrated by this account of one of his lectures, given by his most
famous pupil, Sir JJ. Thompson, later Nobel Laureate, President of the Royal Society
and Master of Trinity; ‘He was one of the most original and independent of men and
never did anything or expressed himself like anybody else. The result was that it was
very difficult to take notes at his lectures so that we had to trust mainly to Rankine's
textbooks. Occasionally in the higher classes he would forget all about having to
lecture and, after waiting for ten minutes or so, we sent the janitor to tell him that the
class was waiting. He would come rushing into the door, taking a volume of Rankine
from the table, open it apparently at random, see some formula or other and say it
was wrong. He then went up to the blackboard to prove this. He wrote on the board
with his back to us, talking to himself, and every now and then rubbed it all out and
said it was wrong. He would then start afresh on a new line, and so on. Generally,
towards the end of the lecture he would finish one which he did not rub out and say
that this proved Rankine was right after all’.

Reynolds became a Fellow of the Royal Society in 1877 and won the Royal Medal
in 1888. By the beginning of the 1900s, Reynolds health began to decline and he
retived in 1905. He died in 1912.

The original experimental equipment of Osborne Reynolds is still operational and
can be seen at the University of Manchester. A permanent exhibition of the life and
achievements of O. Reynolds is visible in the Simon Engineering Laboratories of the
University of Manchester.

References for additional reading:

Lamb, H. (1912-1913). Osborne Reynolds. Proc. Roy. Soc., 88A4.

Rott, N. (1990). Note on the history of the Reynolds number. Annu. Rev. Fluid Mech.,
22 pp. 1-11.

http://www-history.mcs.st-andrews.ac.uk/history/: The MacTutor History of Math-
ematics Archive is a website maintained by John J. O Connor and Edmund F
Robertson and hosted by the University of St. Andrews in Scotland. It contains
detailed biographies of many notable mathematicians.
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The turbulent averaging process is introduced in order to obtain the laws of motion for
the ‘mean’, time-averaged, turbulent quantities. This time averaging is to be defined
in such a way as to remove the influence of the turbulent fluctuations, while not
destroying the time dependence connected with other time-dependent phenomena
with time scales distinct from those of turbulence.

Turbulent averaged quantities

For any turbulent quantity A, the separation
A=A+ 4 (2.2.1)

is introduced with

_ 1 T2
A(x, 1) = ?/ T/ZA(x,t+ 7)dt (2.2.2)

A represents a time-averaged turbulent quantity, where T is to be chosen large enough
compared to the time scale of the turbulence but still small compared to the time
scales of all other unsteady phenomena. Obviously, this might not be always possible:
if unsteady phenomena occur with time scales of the same order as those of the
turbulent fluctuations, the Reynolds averaged equations will not allow to model these
phenomena. However, it can be considered that most of the unsteady phenomena
in fluid dynamics have frequency ranges outside the frequency range of turbulence,
Chapman (1979). The remaining term A" represents the turbulent fluctuating part,
which is of stechastic nature.

For compressible flows, the averaging process leads to products of fluctuations
between density and other variables such as velocity or internal energy. In order to
avoid their explicit occurrence, a density-weighted average can be introduced, called
Favre-averaging, through

-~ pA
i=" (2.2.3)
0
with
A=A+ 4" (2.2.4)
and
pd” =0 (2.2.5)

This way of defining mean turbulent variables will remove all extra products of den-
sity fluctuations with other fluctuating quantities. This is easily seen by performing
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the averaging process defined by equation (2.2.3) on the continuity equation,
leading to

TR
a—’; FV-@0) =0 (2.2.6)

Applied to the momentum equations, we obtain the following equation for the
turbulent mean momentum, in absence of body forces:

873 > x5 5 _= =V R
%+V-(pv®v+p[—r -7 )= pfe (2.2.7)

where the Reynolds stresses ?{, defined by
=R -
T =—pV' V' (2.2.8)

=V
are added to the averaged viscous shear stresses T . In Cartesian coordinates we have

"
i Vi

:R _
Ty = =PV

j
The relations between the Reynolds stresses and the mean flow quantities are
unknown. Therefore, the application of the Reynolds averaged equations to the
computation of turbulent flows, requires the introduction of models for these unknown
relations, based on theoretical considerations coupled to unavoidable empirical infor-
mation. A wide variety of models, from simple algebraic relations to transport
equations for turbulent quantities, such as the turbulent kinetic energy, the turbu-
lent dissipation or even transport equations for the Reynolds stress components have
been developed and applied with varying degrees of success.

Reviews of turbulence models can be found in the books of Wilcox (1998), Pope
(2000), Haase et al. (2006) and in the scientific literature; see for instance Leschziner
and Drikakis (2002) for an excellent review; and various conference proceedings
devoted to turbulent flows.

It is to be mentioned that none of the available turbulence models offers today a
totally accurate description of turbulent flows and although the RANS approxima-
tions is the most widely used in practice, the turbulent model components are their
weakest link.

Practical example: The OBI diffuser
An asymmetric plane diffuser, known as the OBI diffuser, was computed on a grid
made of 39,000 cells with the models of Spalart-Allmaras (SA), Spalart-Allmaras
with curvature corrections (SARC), the k—¢ model of Yang—Shih, Wilcox k—w model,
Menter’s SST variant and the vo-f model. The description of these various models as
well as details on this test case and an extended set of results can be found in Haase
et al. (2000).

Figure 2.2.2 shows the influence of the choice of the turbulence model on the length
of the recirculation zone, as well as comparisons between calculated and measured
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Figure 2.2.2 Comparison of RANS simulations with different turbulence models
for the OBI axisymmetric diffuser. The top figure shows the position and extends of
the separation region, while the bottom figure compares calculated and measured
pressure distribution, wall shear stress at the bottom wall and velocity profiles at the
four positions indicated in the lower insert (for color image refer Plate 2.2.2).
Courtesy NUMECA International and Haase et al. (2006).
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pressure distribution and wall shear stress at the bottom wall, velocity profiles at the
positions indicated in the lower insert. The last figure is noteworthy, as it demonstrates
a clear weakness of all the tested turbulence models, in that the velocity profile in the
downstream duct of the diffuser is experimentally fully recovered, while the calculated
profiles still show remaining effects of their earlier separation.

We can hope that the gained knowledge on turbulence from advanced DNS and
LES simulations will contribute to the improvement of current turbulence models.

2.3 THIN SHEAR LAYER APPROXIMATION (TSL)

At high Reynolds numbers, wall shear layers, wakes or free shear layers will be of
limited size and if the extension of the viscous region remains limited during the flow
evolution, then the dominating influence of the shear stresses will come essentially
from the gradients transverse to the main flow direction.

If we consider an arbitrary curvilinear system of coordinates with £! and £2 along
the surface and &3 = n directed toward the normal, then the Thin Shear Layer (TSL)
approximation of the Navier—Stokes equations consists in neglecting all & ! and £2
derivatives occurring in the turbulent and viscous shear stress terms, Steger (1978),
Pulliam and Steger (1978, 1985). This approximation is also supported by the fact
that generally, at high Reynolds numbers (typically Re > 10%) the mesh is dense in the
direction normal to the shear layer and therefore the neglected terms are computed
with a lower accuracy than the normal derivatives.

This approximation is actually close to a boundary layer approximation, since
viscous terms, which are neglected in the boundary layer approximation, are also
neglected here. However, the momentum equation in the directions normal to the
shear layer is retained, instead of the constant pressure rule over the boundary layer
thickness along a normal to the wall. Therefore the transition from viscous dominated
regions to the inviscid region outside the wall layer is integrally part of the calcula-
tion, and one has here a form of ‘higher order’ boundary layer approximation. The
classical boundary layer approximation is obtained, when the momentum equation in
the direction normal to the wall is replaced by the condition:

p _
on
The thin shear layer approximation amounts to neglect the viscous diffusion in the
direction parallel to the shear surface and keep only the contributions from the
diffusion in the normal direction.
The main motivation for the TSL approximation is historical, as it allowed in
the 1980s some saving in computer times, compared to a full RANS approximation.
Today, this approximation is hardly justified, as it has to rely on the same turbulence
models as current RANS simulations.

0

2.4 PARABOLIZED NAVIER-STOKES EQUATIONS

The Parabolized Navier—Stokes (PNS) approximation is based on considerations
similar to the thin shear layer approximation, but applies only to the steady state
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formulation of the Navier—Stokes equations. This approximation is directed toward
flow situations with a predominant main flow direction, as would be the case in a
channel flow, whereby the cross-flow components are of a lower order of magnitude.
In addition, along the solid boundaries, the viscous regions are assumed to be domi-
nated by the normal gradients and hence, the streamwise diffusion of momentum and
energy can be neglected.

If x is the streamwise coordinate, the x-derivatives in the shear stress terms are
all neglected compared to the derivatives in the two transverse directions y and z.
A similar approximation is introduced in the energy diffusion terms. This approxi-
mation is therefore valid as long as the mainstream flow of velocity u is dominant,
that is as long as the positive x-direction corresponds to the forward flow direc-
tion. This will not be the case anymore if there is a region of reverse flow of the
streamwise velocity component. In this case, the streamwise derivatives of u will
become of the same order as the transverse derivatives and the whole approximation
breaks down.

Note that this approximation can also be applied to supersonic steady flows, where
the streamwise direction appears as the ‘timelike’ direction; see Chapter 3 for a
definition of his concept.

2.5 BOUNDARY LAYER APPROXIMATION

It was the great achievement of L. Prandtl to recognize that at high Reynolds numbers,
the viscous regions remain of limited extension § (of the order of 6/L =~ /v/UL, for a
body of length L) along the surfaces of the solid bodies immersed in, or limiting the
flow. In practical terms, this means that for a Reynolds number of 10°, on a body with
a chord length of 1 m, the boundary layer will have a thickness of the order of a few
mm! If you consider an aircraft wing, flying at a speed of say 800 km/h, the velocity
over the wing will change from zero on the wall to velocities in the range of 800 km/h
over a distance of a few mm. Hence, the velocity gradients in the normal direction
are much larger than the corresponding gradients in the streamwise direction.

In all cases where these viscous regions remain close to the body surfaces, that is in
absence of separation, the calculation of the pressure field may be decoupled from the
calculation of the viscous velocity field. A detailed discussion of the conditions for
the derivation of the boundary layer equations can be found in the books of Batchelor
(1970), Schlichting (1971) and Cebeci and Bradshaw (1984).

With the assumption that the vertical velocity component in the boundary layer
is very small compared to the mainstream velocity, the momentum equation in the
normal direction reduces to the condition of vanishing normal pressure gradient:

2.5.1)
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As a consequence, the pressure p(x,y,z) inside the viscous boundary layer may
be taken equal to the pressure outside of this layer and therefore equal to the value
of the pressure pe(x, ), obtained from an inviscid computation. The pressure pe(x, y)
is the value taken by the inviscid pressure field at the edge of the boundary layer of
surface point (x, y).
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Hence, the boundary layer equations are obtained from the streamwise and cross-
flow momentum equations with the replacement of p (x, v, z) by pe(x, y):

d 0 5 0 d ope d ou
2 2 2z Zouwy=-Fe L 2 (X 252
0+ )+ )+ ) == (u az) 252)

a d I, d e 0 v

E)t(pV) + 8x(/m)Jr ay(pv )+ aZ(/)VW) R +t3, (u az> (2.5.3)
The inviscid pressure gradient, which is obtained from an inviscid calculation prior
to the resolution of the boundary layer equations, acts as an external force on the
viscous region. The same inviscid computation also provides the velocities u(x, y)
and ve(x,y) at the edge of the boundary layer, connected to the pressure field p. by
the inviscid equation:

Ve W = -
p? + p(Ve - V)ve = —Vpe (2.5.4)
where Ve is the velocity vector parallel to the body surface with components wue(x, y)
and ve(x, y). Equations (2.5.2) and (2.5.3) are to be solved with the additional boundary
conditions:

u=1ue(x,y) and v=re(x,y) atz=3,§ (2.5.5)

at the edge of the boundary layer.

The system of equations obtained in this way has only the velocities as unknowns
and this represents a significant simplification of the Navier—Stokes equations. There-
fore, the boundary layer equations are much easier to solve, being close to standard
parabolic second order partial differential equation and many excellent numerical
methods have been developed (e.g. Kline, 1968; Cebeci and Bradshaw, 1977, 1984).

The inviscid region is limited by the edge of the boundary layer, which is initially
unknown since the computational process has to start by the calculation of the pressure
field. In the classical boundary layer approximation, the limits of the inviscid region
are taken on the surface, which is justified for small boundary layer thicknesses. This
leads to a complete separation between the pressure field and the velocity field since
the pressure, in the remaining momentum equations (2.5.2) and (2.5.3), is equal to
the values of the inviscid pressure field at the wall and is known when these equations
are to be solved.

When the influence of the boundary layers on the inviscid flow field is considered
as non-negligible, this interaction can be taken into account in an iterative way, by
recalculating the inviscid pressure field with the limits of the inviscid region located
at the edge of the boundary layer obtained at the previous iteration. This procedure is
applied for thick boundary layers up to small separated regions and is known as the
viscid—inviscid interaction approximation; see Le Balleur (1983) for a recent review
on the subject.

2.6 THE DISTRIBUTED LOSS MODEL

The distributed loss model is an approximation applied essentially in internal and
channel flows more particularly in the fields of turbomachinery, river hydraulics and
oceanography.



The Dynamical Levels of Approximation 97

This model is defined by the assumption that the effect of the shear stresses on the
motion is equivalent to a distributed friction force, defined by semi-empirical data.
Obviously, a certain number of three-dimensional flow details will be lost in such an
approximation, in particular, all flow aspects that can be attributed to, or are strongly
influenced, by viscous effects.

Since the details of the loss mechanism, that is of the shear stresses, are not con-
sidered, these equations are to be taken as describing an inviscid model, however
with an entropy producing term. The boundary conditions for the velocity field are
therefore the inviscid conditions of vanishing normal velocity components at the
walls, with a non-vanishing tangential velocity along these boundaries. The resulting
approximation is then of inviscid nature but not isentropic since the entropy variation
along the path of a fluid particle will be connected to the energy dissipation along
this path. See for instance Hirsch and Deconinck (1985) for an application to internal
turbomachinery flows.

A similar approximation is introduced in river hydraulics where the effects of the
wall friction are represented by an empirical resistance force. The distributed loss
model therefore consists in replacing the shear stress terms by an external friction
force, function of velocity or other flow variables, but not directly expressed as second
order derivatives of the velocity field.

2.7 INVISCID FLOW MODEL: EULER EQUATIONS

The most general flow configuration for a non-viscous, non-heat conducting fluid is
described by the set of Euler equations, obtained from the Navier—Stokes equations
(2.1.1) by neglecting all shear stresses and heat conduction terms. As is known from
Prandtl’s boundary layer analysis, this is a valid approximation for flows at high
Reynolds numbers, outside viscous regions developing near solid surfaces.

This approximation introduces a drastic change in the mathematical formulation
with respect to all the previous models containing viscosity terms since the system of
partial differential equations describing the inviscid flow model reduces from second
order to first order. This is of paramount importance since it will determine the
numerical and physical approach to the computation of these flows. In addition, the
number of allowable boundary conditions is modified by passing from the second
order viscous equations to the first order inviscid system.

The time-dependent Euler equations, in conservation form and in an absolute frame
of reference, for the conservative variables U defined by equation (2.1.2):

&+%~ﬁ=Q (2.7.1)
ot
form a system of first order partial differential equations hyperbolic in time (as will be
shown later), where the flux vector F has the Cartesian components ( f', g, /) given by

pu pv oW
,ou2 +p pvu pwu
f= puv g=|p*+p h= OWVY (2.7.2)
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and the source term Q is given by equation (2.1.4). Generally, heat sources will
not be considered since heat conduction effects are neglected in the system of Euler
equations.

It is important to notice the properties of the entropy variations in an inviscid
flow. From equation (1.4.18) and in absence of heat sources, the entropy equation for
continuous flow variations reduces to

0. L =
T<§+w.w>=o (2.73)

expressing that entropy is constant along a flow path. Hence, the Euler equations
describe isentropic flows, in absence of discontinuities.

As is known, the set of Euler equations allows also discontinuous solutions in
certain cases, namely, vortex sheets, contact discontinuities or shock waves occurring
in supersonic flows. The properties of these discontinuous solutions can only be
obtained from the integral form of the conservation equations, since the gradients of
the fluxes are not defined at discontinuity surfaces.

2.8 POTENTIAL FLOW MODEL

The most impressive simplification of the mathematical description of a flow system
is obtained with the approximation of a non-viscous, irrotational flow.
Setting the vorticity to zero, by

=Vxvy=0 (2.8.1)

the three-dimensional velocity field can be described by a single scalar function ¢,
the potential function defined by

=V (2.8.2)

reducing the knowledge of the three velocity components to the determination of a
single potential function ¢.

As seen from the preceding section, if the initial-conditions are compatible with
uniform entropy, than for continuous flows, equation (2.8.1) implies that the entropy
is constant over the whole flow field. Hence, for isentropic flows, the momentum
equation under Crocco’s form (1.5.13) becomes

9 - -
5 (V) +VH =0 (2.8.3)
or
d
£+H:% (2.8.4)

the constant Hy having the same value along all the streamlines.
This equation shows that the energy equation is not independent anymore from
the momentum equation, and therefore the flow will be completely determined by
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initial and boundary conditions on one hand and by the knowledge of the single
function ¢ on the other hand. This is a very considerable simplification indeed.

The equation for the potential function is obtained from the continuity equation,
taking into account the isentropic conditions to express the density in function of
velocity and hence in function of the gradient of the potential function. We obtain the
basic potential equation in conservation form:

% + V- (pVp) =0 (2.8.5)

and the relation between density and potential function obtained by introducing the
definition of stagnation enthalpy in function of velocity and static enthalpy #4, for a
perfect gas:

1/(y=1) =2 1/(y=1)
P h v op
KTA <E> |:<H0 2 5) /hAi| (2:56)

The subscript A refers to an arbitrary reference state, for instance the stagnation
conditions pa = po and hp = Hj.

Steady potential flows

A further simplification for steady potential flows is obtained since the potential
equation reduces to, with H = Hy = constant

V- (pVe) =0 (2.8.7)
with the density given by equation (2.8.6) where z4 can be chosen equal to Hy. Hence,
we have

- 1/(r=D
\V/ 2

L9 (2.8.8)

£0 2Hy

where pg is the stagnation density, constant throughout the whole flow field.

Both for steady and unsteady flows, the boundary condition along a solid boundary
is the condition of vanishing relative velocity between flow and solid boundary in the
direction n normal to the solid wall

_% e (2.8.9)
on

Vn

where iy is the velocity of the solid boundary with respect to the considered system
of reference.

Kutta Joukowski condition

Although the local vorticity in the flow is zero it may occur for a potential flow in
non-simply connected domains that the circulation around a closed curve C becomes
non-zero. This is essentially the case for lifting airfoils. To achieve a non-zero lift
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on the body, a circulation I" around the airfoil is imposed. This circulation is repre-
sented by a free vortex singularity, although it originates from a vorticity production
physically generated in the boundary layer. It follows that the value of I" cannot be
determined from irrotational theory and is an externally given value for a potential
flow. It is also to be remembered that, with the addition of the free vortex singularity
I, an infinity of different potential flows can be obtained, for the same incident flow
conditions, each one of these solutions having another value of I". However, for aero-
dynamically shaped bodies such as airfoil profiles, a fairly good approximation of the
circulation and hence the lift, may be obtained by the Kutta—Joukowski condition,
provided that no boundary layer separation occurs in the physical flow. The Kutta—
Joukowski condition states that the value of the circulation, which approximates best
the real (viscous) attached flow, is obtained if the stagnation point at the downstream
end of the body, is located at the trailing edge.

Supercritical airfoils

The development of supercritical airfoils, defined as having a shock-free transi-
tion from supersonic to subsonic surface velocities, is one of the most spectacular
outcomes of the early developments of computational fluid dynamics. These airfoils
are now of general use on civil aircrafts, allowing important savings on fuel costs due
to the absence of the pressure drag produced by a shock.

Subsonic potential flows

In the subsonic range, the potential model has the same validity as the Euler model for
uniform inflow conditions on a body, since the flow remains irrotational in this case.

The small disturbance approximation of the potential equation

In steady or unsteady transonic flow around wings and airfoils with thickness to chord
ratios of a few percent, we can generally consider that the flow is predominantly
directed along the chordwise direction, taken as the x-direction. In this case, the
velocities in the transverse direction can be neglected and the potential equation
reduces to the so-called small disturbance potential equation:

2o %9 ¢ 1 (P9 _dp 3¢

1—M2)— — == |=+2= 2.8.10
( %) a2 T o dy 02 a2 ( or? ox Ot 8x> ( )
Historically, the steady state, two-dimensional form of this equation was used by
Murman and Cole (1961) to obtain the first numerical solution for a transonic flow
around an airfoil with shocks.

Linearized potential flows: singularity methods

If the flow can be considered as incompressible, the potential equation becomes a
linear Laplace equation for which many standard solution techniques exist. One of
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these, based on the linearity of the equation is the singularity method whereby a linear
superposition of known elementary flow fields such as vortex and source singularities
are defined. The unknown coefficients of this linear superposition are obtained by
imposing that the resultant velocity field satisfies the condition of vanishing normal
velocity along solid body surfaces (in absence of wall suction or blowing).

The three-dimensional extension of the singularity method, the Panel method,
has been widely used in the aeronautical industry in order to compute the three-
dimensional flow field around complex configurations. The method is still in use and
although extensions to handle compressibility and transonic regimes can be devel-
oped, these methods are best replaced, for high speed flows, by higher approximations
such as the nonlinear potential model and the Euler equations for the inviscid flow
description. We will therefore omit any detailed discussion of this approach and the
interested reader will find detailed information in the specialized literature.

2.9 SUMMARY

Different flow models, involving various degrees of approximation, have been defined
and illustrated by a variety of examples. With the exception of laminar flows, which
can be resolved by the Navier—Stokes model with the addition of empirical informa-
tion on the dependence of viscosity and heat conductivity coefficients all other models
are limited by either empirical knowledge about turbulence, as for the Reynolds
averaged Navier—Stokes equations, or by some approximations.

Thin shear layer models are valid if no severe viscous separated regions exist
and similarly, the parabolized Navier—Stokes models for stationary formulations are
limited by the presence of streamwise separation.

Inviscid flow models provide a valid approximation far from solid walls or when the
influence of boundary layers can be neglected and, although the isentropic potential
flow model is of questionable accuracy in transonic flows with shocks, it remains a
valid and economical model for subsonic flows and for shock-free supercritical flows.

This should be kept in mind in the selection of a flow model, and the limits of
validity have to be established for each family of applications, by comparison with
experimental data or with computations from a higher level model.
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PROBLEMS

P.2.1 By developing explicitly the shear stress gradient and the momentum terms,
derive the equations (2.1.7).

P.2.2 By using the definition of the shear stress tensor, equation (1.3.6), work out the
full, explicit form of the Navier—Stokes equations, for non-constant viscosity
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coefficients, in function of velocity components, in Cartesian coordinates.
Show also, that in the case of constant viscosity, the equations reduce to the
projections of equation (1.3.13).

Hint: Applying equation (1.3.6), we have
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and the x-projection of the momentum equation becomes
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P.2.3 Derive the energy conservation equation for a three-dimensional incompress-
ible flow, in presence of gravity forces.
Hint: Apply equation (1.3.18) to the momentum equation (1.4.40) and mul-
tiply scalarly by v. Introducing the total energy (H = p/p + v*/2 + gz) where
z is the vertical coordinate, proof the Bernoulli equation:
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P.2.4 By working out explicitly the gradients of specific mass in function of the
velocities, show that the potential equation (2.8.5) can be written in the quasi-
linear form, in function of the Mach numbers M; = v;/c:
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with a summation on the Cartesian subscripts i, j = 1,2,3 or X,y,z. Show that
in two dimensions the steady state potential equation reduces to
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Hint: Apply the isentropic laws and the energy equation (2.8.4) to derive the

relations
dh = czdp/p
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where c is the speed of sound, and substitute into equation (2.8.5).



Chapter 3

The Mathematical Nature of the Flow Equations
and Their Boundary Conditions

OBJECTIVES AND GUIDELINES

We have learned in Chapter 1, how to derive the basic equations of fluid mechanics
and to recognize that any flow configuration is the outcome of a balance between the
effects of convective fluxes, diffusive fluxes and external or internal sources. !

From the mathematical point of view, diffusive fluxes appear through second order
derivative terms in space, as a consequence of the generalized Fick law, equation
(1.1.8), which expresses the essence of the molecular diffusion phenomenon as a
tendency to smooth out gradients. The convective fluxes, on the other hand, appear
as first order derivative terms in space and express the transport properties of a flow
system.

Next, we have seen in Chapter 2 how various approximation levels give rise to dif-
ferent mathematical models. The common property of all possible models describing
flow behavior is that they constitute a system of partial differential equations (PDEs)
in space or in space—time, which can take up various forms, but where the highest
space derivatives do not exceed second order.

Because of this variety of mathematical flow models, we need tools to analyze
their properties, independently of their appearance and to tell us something about the
behavior of their solutions.

Let us illustrate this by the example of a stationary compressible potential flow. We
have seen in Chapter 2 that we can describe this flow by two different models, namely
the set of time-independent Euler equations (2.7.1), or by the potential equation
(2.8.5). If we restrict ourselves to two dimensions, the steady Euler model would be
described as

ap ap du av
P - . 720
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ox Va_ pdx  pox

UIf these properties are not very clear to you at this stage, we recommend you to go back to
Section 1.1.2, and to study it again with great care. Give also a special attention to Table 1.1 and to
the associated discussion.
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19, 2
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with the isentropic relation between pressure and density defined by the speed of
sound

? = (8£> (13.2)
o/

On the other hand, the steady compressible potential equation model can be written
as (see Problem P. 2.4)
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where ¢ is the potential function defined by u = d¢/dx, v =0¢/dy.
For a uniform incoming flow, these two sets of PDEs describe exactly the same
physics of steady irrotational flows, but their formulation appears very different. We
have therefore to develop methods that allow us to analyze the mathematical properties

of PDEs, independently of the different forms they might take.
Hence, we wish to answer the following basic questions:

e How do we recognize if, or when, a mathematical model describes a convection
or diffusion phenomenon, taking into account that the models are generally
expressed by a system of partial differential equations, where the presence of
convection or diffusion terms might not be as obvious as in Section 1.1.2.

e What are the different types of physical situations, in addition to pure convection
or pure diffusion that can occur and how do we recognize them.

e What are the associated initial and/or boundary conditions.

In the process of numerical discretization, it is essential indeed to be able to identify
these differences, since it cannot be expected that a discretization compatible with the
physics of diffusion will be valid for the physics associated to convection, since the
physical properties of these two phenomena are fundamentally different, as discussed
in Section 1.1.2.

In addition, there is another very important distinction we have to consider, namely
the option between steady and unsteady flow descriptions. In the former case, no
time derivatives will appear in the mathematical model, which will contain only
space derivatives. In the latter case, time derivatives are present, next to the space
derivatives, these derivatives being also assumed not to exceed second order. As we
will see in the next sections, this is an important distinction since the mathematical
properties of the considered equations can change significantly when introducing or
removing the time dependence.

Moreover, since the laws of fluid mechanics are nonlinear (with the sole excep-
tion of incompressible potential flows), we have to consider the possibility for the
mathematical nature of the equations to be flow dependent, with different properties
in different regions of the flow domain. This will be the case for instance for steady
transonic flows, as we will see in the following sections in more detail. But we can
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already have a hint as to what we are referring to hereby looking at equation (13.3) for
the simplified case of a unidirectional flow in the x-direction, with v =0, reducing to

( - 2‘—;) ‘;27‘5 + gi—f =0. Observe that for subsonic flows, i.e. u < ¢, the two second
derivative terms have the same positive sign, but they become of opposite sign for
supersonic flows, when u > c.

This chapter will introduce you, therefore, to the analysis of a chosen mathemat-
ical model and to the derivation of the specific properties behind its set of partial

differential equations. It is structured in the following way:

e We introduce first, in Section 3.1, the most simplified forms of the basic
convection—diffusion equation formulation of a conservation law (1.1.9), in order
to bring forward the essence of this type of equation, via reduction to two indepen-
dent space—time variables. That is, to one space dimension for time-dependent
problems and to two space dimensions for time-independent problems. A fur-
ther simplification is obtained after a linearization, whereby the nonlinear
properties are removed leading to linear convection or convection—diffusion
equations.

e Section 3.2 is defining the basic methodology for the mathematical analysis of the
properties of PDEs. We will introduce the fundamental concepts and distinction
between hyperbolic, parabolic and elliptic PDEs. This will also lead us to a
direct physical interpretation of these properties and to their fundamental link
with the physical phenomena of convection and diffusion.

e An important extension of this analysis is developed in Section 3.3, where the
concepts of characteristic surfaces and the associated very fundamental proper-
ties of domain of dependence and domain of influence are introduced. These
are essential properties of hyperbolic and parabolic equations, and play a very
critical role in many areas of CFD.

e Section 3.4 redefines the mathematical properties for time-dependent models
and introduces the notion of time-like variable. In addition, this will allow us to
establish the link with the conservation form of the PDEs.

e The distinction between hyperbolic, parabolic and elliptic equations is important
as it will form the basis of the analysis of the number and type of initial and
boundary conditions associated to the various properties of a system of PDEs.
This is described and analyzed in Section 3.5.

e An Advanced Section A3.6 will focus on the introduction of compatibility
relations, associated to characteristic surfaces. These relations play a very impor-
tant role in the numerical treatment of boundary conditions for the Euler and
Navier—Stokes equations in many CFD codes.

Figure 3.0.1 provides you with the guide to this chapter, for further reference, while
going through the different sections.

Finally, in order to situate globally the important content of this chapter, we refer
you to the general introduction and to the section entitled ‘The components of a CFD
simulation system’, Figure 1.3.1 in particular. You will notice that this chapter is
the last step of Part I aimed at guiding you toward the definition of the approxima-
tion levels and the associated mathematical model to be considered as candidate for
discretization.
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Figure 3.0.1 Structure and guide to this chapter.

3.1 SIMPLIFIED MODELS OF A CONVECTION-DIFFUSION EQUATION

We wish here to look at the simplest forms that can be taken by a convection—diffusion
conservation equation, in order to focus on the basic mathematical properties, without
being burdened by non-essential complexities, such as extra space dimensions, or
specific source terms.

Hence, we limit ourselves in this section to two independent space—time variables.
Consequently, for time-dependent models, we will consider only one space dimension
(1D formulation); while two space variables (x and y) will be considered for time-
independent models.

3.1.1 1D Convection-Diffusion Equation

Focusing first on time-dependent models, we consider the quasi-linear equation
(1.2.10), assuming constant density and constant diffusivity coefficients, absence
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of source terms and one space dimension x. The resulting simplified 1D convection—
diffusion equation is written as follows:
u
o—
0x2

ou d
— 4+ a(u)l —
ox

. (.1.1)

where we have written a(u) for the x-component of the convection velocity and
« for the diffusivity coefficient. The convection velocity a(u) can be an arbitrary
function of u.

We do not specify the significance of u at this stage, but when the simplifications
mentioned here are applied to the temperature equation, # will be replaced by the tem-
perature 7', while if one considers the x-projection of the momentum equation (1.3.14)
in absence of pressure and external forces, u will represent the velocity and a(u) will
be equal to u, i.e. a(u) = u. In this case we obtain the well-known Burgers equation:

ou ou 0%u

This equation plays an important role since it contains the full convective nonlinear-
ity of the flow equations and a large number of analytical solutions of this equation
are known (see Whitham, 1974). The general importance of analytical solutions to
simplified models cannot be enough underlined, as these solutions are essential to the
verification and the validation process of numerical methods and solutions.

A further simplification is obtained by assuming a(u) to be constant, leading to the
one-dimensional linear convection—diffusion equation:

ou ou 0%u

Let us look now at specific particular cases.

Pure Convection

In absence of diffusion, « =0, equation (3.1.1) reduces to the nonlinear convection
equation:

ou ou
=0 3.14
y +a(u)8x (3.1.4)

A very important model is the ‘inviscid’ Burgers equation:

ou ou

4t u—=0 3.15
or " ox (3-1.3)

This equation generates discontinuous solutions from an initial continuous field, in

a process very similar to the process of shock creation in supersonic flows, with the

advantage that this process can be fully analyzed from the corresponding analytical

solution of the Burgers equation (3.1.5) (see Whitham, 1974).
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The ultimate simplification is obtained by assuming the convection velocity to be
a constant, leading to the one-dimensional linear convection equation:

ou ou

—+a—=0 (3.1.6)
ot ox

This equation describes the transport of the quantity u by the constant convection

velocity a, whereby an arbitrary initial profile u(x, = 0) = up(x) is translated without

change with the velocity a. Stated otherwise, after a time ¢, the quantity u is the initial

profile displaced with distance x = at. Hence, the solution u(x, ¢) is given by

u(x,t) = up(x — at) (3.1.7)

This equation can also be seen as a wave propagation equation, with the interpreta-
tion of u as a wave amplitude having a phase propagation speed equal to a. Indeed,
considering a plane wave of amplitude #, wavelength A, pulsation @ = 25f, where f
designates the wave frequency, defined by

u = fie' =D (3.1.8)

with wave number k = 2m/A and I = 4/—1, this propagating wave will be solution of
equation (3.1.6) if

w = ak (3.1.9)

This relation states that the solution (3.1.8) is a plane wave satisfying the basic relation
between wavelength and frequency f =a/A.

This equivalence between pure convection and wave propagation is critical to the
understanding of the physics of convection and is central to the approach taken in
this chapter.

Hence, we advise you to always remember that these two phenomena, convection
and wave propagation, are two facets of the same physical properties.

3.1.3 Pure Diffusion in Time
In the absence of convection, we have a time-dependent diffusion, described by

ou 9u

Applied to the temperature, this equation is known as the heat diffusion equation of
Fourier, describing heat conduction in solids or fluids at rest.

For constant values of the diffusion constant, exact solutions to this equation are
known. Looking for a solution of the type (3.1.8), we obtain after introduction in
(3.1.10), the relation

lo = ak® (3.1.11)
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leading to the solution
u = felkre—ak’t (3.1.12)

This represents the behavior of a wave in space, with wave number k, exponentially
damped in time, due to the diffusion coefficient o. Observe that the diffusion coeffi-
cient « has to be positive to describe a physical diffusion. A negative value of «, will
represent an exponentially growing phenomenon, typical of an explosion.

We recommend you to closely remember this property of the diffusion equation in
time: it represents an exponentially damped spatial wave, if the diffusion coefficient
is positive.

3.1.4 Pure Diffusion in Space

In two dimensions, and for a time-independent model, the convection—diffusion
equation (1.2.10) reduces to the Poisson equation:

Pu %u

St = 3.1.13

o2 o2 q ( )
Hence, as already pointed out in Section (1.1.2), the Laplace operator describes a
pure spatial diffusion.

These various models form a basis for the development of numerical schemes and
the investigation of their properties. We will extensively come back to these models
in Part II of this book, where they will be used to analyze and compare a large variety
of numerical schemes.

3.2 DEFINITION OF THE MATHEMATICAL PROPERTIES OF
A SYSTEM OF PDES

Let us now move to the key part of this chapter, namely how do we define a general
method to identify the mathematical properties of a system of PDEs?

Although we have extensively stressed in Chapter 1, the importance of the conser-
vation form of the equations, as compared to the quasi-linear and non-conservative
form, it is obvious that these two formulations will describe the same physics, and
hence will share the same mathematical properties. Therefore, because of its explicit
formulation, the quasi-linear form is more appropriate for the analysis of the
mathematical properties and will be used in this section and throughout this
chapter.

Various approaches for the classification of PDEs can be found in the mathematical
literature, connected to the possible existence of specific surfaces, called character-
istic surfaces, which can be defined as families of surfaces, or hypersurfaces for
a general three-dimensional unsteady flow, along which certain properties remain
constant or certain derivatives can become discontinuous. The discussion of these
properties can be found in many textbooks, and we refer for instance to Courant and
Hilbert (1962), Ames (1965) and Hildebrandt (1976) for a mathematical presentation.

However, we will give here the preference to a more ‘physical’ presentation of the
structure of PDEs and of the associated concept of characteristic surfaces.
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We offer the following definition:

A system of quasi-linear partial differential equations will be called of hyperbolic
type, if its homogeneous part admits wave-like solutions.

This implies that a hyperbolic set of equations will be associated to propagating
waves and that the behavior and properties of the physical system described by these
equations will be dominated by wave-like phenomena.

In other words, a hyperbolic system describes convection phenomena and
inversely, convection phenomena are described by hyperbolic equations.

On the other hand, if the equations admit solutions corresponding to damped
waves the system will be called parabolic and if it does not admit wave-like solutions
the equations are said to be elliptic. In this case, the behavior of the physical system
considered is dominated by diffusion phenomena.

3.2.1 System of First Order PDEs

The systems of partial differential equations (PDE) describing the various levels
of approximation discussed in the previous chapter are quasi-linear, and at most of
second order. It can be shown however that any second order equation, or system of
equations, can be transformed into a first order system. Although this transformation
is not unique and could lead to an artificially degenerate system, it will be considered
that an appropriate transformation has been defined such that the system of first order
represents correctly the second order equations.

Hence, the following steps define the procedure to identify the properties of a
mathematical model:

Step 1: Write the system of PDEs describing the mathematical model under the
form of a system of first order PDEs

Suppose we have n unknown variables u/, in an (m + 1)-dimensional space x*, we
can group all the variables »/ in an (n x 1) vector column U and write the system of
first order PDEs under the general form:

Ak& —
ok

ul

0 k=1,....m+1

. (3.2.1)
U =

un

where A% are (n x n) matrices and Q is a column vector of the non-homogeneous
source terms. The matrices A¥ and O can depend onx* and U, but not on the derivatives
of U.

Note that we always assume that a summation is performed on repeated indices.
This is called the Einstein summation convention.

Step 2: Consider a plane wave solution of amplitude U in the space of the
independent variables X with components x* (k=1,...,m+1), defined by

U = U@ = {eltms®) (3.2.2)
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where I=+/—1 and 7 is a vector in the m-dimensional space of the independent
variables x.

Step 3: Introduce this solution in the homogenous part of the system (3.2.1) and
find the values of n satisfying the resulting equation
The homogenous part of equation (3.2.1) is written as
oU
A= =0 k=1,...,m+1 (3.2.3)
ok
and the function (3.2.2) is a solution of this system of equations if the homogenous
algebraic system of equations:

(A n 0 =0 (3.2.4)

has non-vanishing solutions for the amplitude /. This will be the case if and only if
the determinant of the matrix A¥n; vanishes.

Step 4: Find the n solutions of the equation
det ’Aknk‘ -0 (3.2.5)

Equation (3.2.5) defines a condition on the normals 7. This equation can have at most
n solutions, and for each of these normals 7%, the system (3.2.5) has a non-trivial
solution.

The system is said to be hyperbolic in the space x* if all the n characteristic
normals n* are real and if the solutions of the n associated systems of equations
(3.2.5) are linearly independent. If all the characteristics are complex, the system
is said to be elliptic in the space x* and if some are real and other complex the
system is considered as hybrid.

If the matrix (4°n;) is not of rank n, i.e. there are less than n real characteristic
normals then the system is said to be parabolic in the space x*.

This will occur, for instance, when at least one of the variables, say u! has derivatives
with respect to one coordinate, say x!, missing. This implies that the components
A }1 =0 for all equations i.

Example E.3.2.1: System of two first order equations in two dimensions

The above-mentioned properties can be illustrated in a two-dimensional space x, y
with the system:

aa + C@ Zfi
bav ou

4= =
8x+ ay /2

(E3.2.1)

or in matrix form:
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(E3.2.2)
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Hence, with x! =x, x2 =y

u a 0 0 ¢
U=\, Al = 0 b‘ Azz'd 0 Q:Q (E.3.2.3)
Equation (E.3.2.2) is written as
oU U
Al — 4+ 42— =90 (E3.2.4)
ox ay

The determinant equation (3.2.5) becomes, after division by 7, supposed to be
different from zero

any/n, ¢

1 2| _
|A ny +A4 ny} =n, d bny/n,

—0 (E.3.2.5)

leading to the conditions for the characteristic normals

e \>  cd
<l> = (E.3.2.6)
ny ab

If cd /ab > 0, the solutions 7y /1, are real and the system is hyperbolic in the space
(x, ), for instance a = b = 1; c =d = 1 with vanishing right-hand side leading to the
well-known wave equations, obtained after elimination of the variable v:

Pu u E327
o R (E.3.2.7)

If cd /ab < 0, equation (E.3.2.6) has no real solutions and the system is elliptic in
the space (x, y). For instance, a = b = 1; c = —d = —1 and vanishing right-hand side
leading to the Laplace equation which is the standard form of elliptic equations and
describes diffusion phenomena.

Finally, if b =0, there is only one characteristic normal n, =0 and the system is
parabolic. For instance, witha=1,b=0,c=—d =—1and f; =0, f = v, we obtain
the standard form for a parabolic equation:

u  u

= — E.3.2.8
ax 92 ( )

This is recognizable by the fact that the equation presents a combination of first and
second order derivatives.

Example E.3.2.2: The stationary Euler equations in two dimensions

This system is defined by equations (I3.1), which can be written in the matrix form
(3.2.3) as follows:

u p 0 9 |P v 0 p 5 | P
o u 0 o+ 0 v 0 o | =0 (E3.2.9)
0 0 ul|l™|v Ao 0 v Vv
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Introducing the vector

P
U=|u (E.3.2.10)
v
the system is written in the condensed form:
U oU
A'— 42— =0 (E.3.2.11)
ox ay

The three characteristic normals 7, are obtained as the solutions of equation (3.2.5),
with A =ny/n,

UA + v PA P
rZ/p ur+v 0 =0 (E.3.2.12)
2/p 0 uk +v

Working out the determinant (E.3.2.12) leads to the solution

A= _Y (E.3.2.13)
u

and the two solutions of the quadratic equation

W =AW+ 2uv+ (P =) =0 (E.3.2.14)

L@6) _ TW +cevu? +v2 — 2

— (E3.2.15)

u —c

The first solution is always real, and the two others are real if the flow is supersonic,
since equation (E.3.2.15) can be written as follows, after introduction of the Mach
number:

/1,2 2
My YWY (E.3.2.16)
C
—uv + VM2 — 1
2 _ 2

A0 — (E.3.2.17)

Hence, the stationary Euler equations are hyperbolic in (x, y) for supersonic flows.

For subsonic flows, the second and third solutions are complex conjugate, and hence
the system is a hybrid mix elliptic—hyperbolic, since one solution is always real.

At the sonic velocity M =1, the two solutions A® =21®) and the system is
parabolic.
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3.2.2 Partial Differential Equation of Second Order

These different concepts can also be applied to the classical example of the quasi-linear
partial differential equation of second order:

¢ 92 ¢
— +2b — =0 32.6
a8x2 + ox 9y +C8y2 ( )

where a, b and ¢ can depend on the coordinates x, y, the function ¢ and its first
derivatives. This equation can be written as a system of first order equations, after
introduction of the variables u and v defined by

0 o
u= % V= i 3.2.7)
ox ay
Equation (3.2.6) is then equivalent to the following system:
ou ou av
X a4 y
5 au (3.2.8)
Z_Z
ox  ay
which can be written in matrix form:
a 0|0 |u 2b c| 0 |u
0 1|ax|v }—1 ogv_o (3.2.9)
Introducing the vector U and the matrices A! and 42
_|u 1_|a O 2 _|2b ¢
U_v A_O 1‘ A_’_l 0 (3.2.10)
we obtain the form (3.2.3) and equation (3.2.5) leads to
any + 2bn, cn, —0 32.11)
—ny Py

Hence, from the roots of

2
a<ﬁ> +2b<"—x> o= (3.2.12)
ny ny

the well-known conditions defining the type of the second order quasi-linear partial
differential equation (3.2.6) are obtained.
The solutions of equation (3.2.12) are given by

nx —b++/b? —ac

ny a

(3.2.13)
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The solution (3.2.2) will represent a true wave if n,, is real for all real values of #,.
Therefore, if (b*> — ac) is positive there are two wave-like solutions, and the equation
is hyperbolic, while for (b*> — ac) < 0 the two solutions are complex conjugate and the
equation is elliptic. When (b* — ac) =0 the two solutions are reduced to one single
direction ny/n, = —b/2 and the equation is parabolic.

Example E.3.2.3: Stationary potential equation

3.3

An interesting example is provided by the stationary potential flow equation in two
dimensions x, y, defined by equation (I3.3) where ¢ designates the speed of sound:

2N\ 52 2 2\ a2
us\ 0°¢p  2uv 9°¢ v\ 0°¢
( cz) ox2 % oxdy +< 02) ay? ( )

with

2 2
u uv \4
a= <1—C7> b=-7 c= (1—;2) (E3.2.19)

we can write the potential equation under the form (3.2.6). In this particular case the
discriminant (b* — ac) becomes, introducing the Mach number M

u? +v2

2 _
b* —ac = 5

—1=M?-1 (E.3.2.20)

c

and hence the stationary potential equation is elliptic for subsonic flows and hyper-

bolic for supersonic flows. Along the sonic line M = 1, the equation is parabolic.
The solution (3.2.13) takes the following form for the two-dimensional potential

equation:

+AVM?2 — 1
m_wECVMEZ] (E3221)
}’ly cCe —Uu

This mixed nature of the potential equation has been a great challenge for the numer-
ical computation of transonic flows since the transition line between the subsonic and
the supersonic regions is part of the solution. An additional complication arises from
the presence of shock waves which are discontinuities of the potential derivatives and
which can arise in the supersonic regions. The particular problems of transonic poten-
tial flow with shocks and their numerical treatment will be discussed in Volume I1.

HYPERBOLIC AND PARABOLIC EQUATIONS: CHARACTERISTIC
SURFACES AND DOMAIN OF DEPENDENCE

Parabolic and hyperbolic equations play an important role in CFD, due to their specific
properties associated to propagation, or convection, phenomena. They are recognized
by the existence of real characteristic normals, solutions of equation (3.2.5). Each of
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these normals 7% defines therefore a surface, called characteristic surface, to which
it is orthogonal.

We will show here the very important consequences of these properties, as they
have a significant effect on the whole process of discretization in CFD.

3.3.1 Characteristic Surfaces

Indeed, if we define a surface S(x¥)=0, in the (m + 1)-dimensional space of the
independent variables x*, the normal to this surface is defined by the gradient of the
function S(x), as

i=VS (3.3.1)

See Figure 3.3.1 for a surface in the 3D space.

What is the significance of this characteristic surface in terms of wave
propagation, referring to the plane wave solution (3.2.2)?

If equation (3.3.1) is introduced in the plane wave (3.2.2), a general representation
is defined as

RS N as
U = Ul = Jel*S0 with 5, & o (3.3.2)
X
If we consider the tangent plane to the surface S(x¥) =0, defined by
k 23 x9S k
Sx*)=8S0)+x-VS=50)+x e = 5(0) 4+ x"ny (3.3.3)
X

we observe that along the constant values of the phase of the wave ® 23 VS, the
quantity U is constant.

Hence, we can consider that following the direction of the normal 7 the quantity
U is propagating at a constant value.

Wave front surface

N
S(x) = Ct

Figure 3.3.1 Wavefront surface and associated normal.
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The surface S is called a wavefront surface, defined as the surface separating the
space domain already influenced by the propagating quantity U from the points not
yet reached by the wave.

Observe that in the general case of #n unknown flow quantities u/, we have n
characteristic surfaces, for a pure hyperbolic problem.

Inatwo-dimensional space the characteristic surface reduces to a characteristic line.
The properties U are transported along the line S(x, y) = 0 and the vectors tangent to
the characteristic line are obtained by expressing that along the wavefront:

5 . 0§ as
dS=VS.dx= —dx+ —dy=0 3.34)
ox ay

Hence, the direction of the characteristic line in two dimensions is given by

dy S

Ny
=—— 335
dx Sy, ny ( )

In two dimensions, there are two characteristic directions for a hyperbolic equa-
tion, such as the two solutions (3.2.13). Hence out of each point in the (x, y)
domain, two characteristics can be defined, along which two quantities propagate.
As we have as many unknowns, at each point the solution can be obtained from the
characteristic-related quantities that have propagated from the boundary to the point
P. See Figure 3.3.2 for an example.

A numerical method based on these properties has been applied in the past, partic-
ularly for two-dimensional problems, and is known as the Method of Characteristics.

Example E.3.3.1: The small disturbance potential equation

Referring to Example E.3.2.3, the small disturbance potential equation is obtained
for a horizontal incoming flow of Mach number M, in case the vertical velocity

y
Characteristic line
n
®
v X
_)
I n

Characteristic line

Figure E.3.3.1 Characteristics for two-dimensional potential equation.
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component can be considered as negligible, for instance for a flow along a thin body.
The stationary potential equation reduces to the form, assuming that the horizontal
velocity component remains constant,

A-M2)—+—=0 (E3.3.1)
X

where M is the upstream Mach number.
The solutions (E.3.2.21) reduce to the following, considering a supersonic flow, for
which the solutions are real

T o /M2 —1 (E3.3.2)

nx

hereby defining the normals to the two characteristics for supersonic flows. Their
directions are obtained from equation (3.3.5) as

d
&y =41/ /M2 —1=+tanp (E.3.3.3)

Referring to Figure E.3.3.1, it can be seen that these characteristics are identical to
the Mach lines at an angle u to the direction of the velocity, with

sinpn = 1/Mso (E.3.3.4)

3.3.2 Domain of Dependence: Zone of Influence

The propagation property of hyperbolic problems has important consequences with
regard to the way the information is transmitted through the flow region.

Considering Figure 3.3.2, where I is a boundary line distinct from a characteristic,
the solution U along a segment AB of I" will propagate in the flow domain along the
characteristics issued from AB. For a two-dimensional problem in the variables x, y,
there are two characteristics if the problem is hyperbolic.

Hence, the two characteristics out of A and B limit the region PAB, which deter-
mines the solution at point P. The region PAB is called the region of dependence of
point P, since the characteristics out of any point C outside AB will never reach point
P. On the other hand, the region downstream of P, and located between the charac-
teristics, defines the zone where the solution is influenced by the function value in P.
This region is called the zone of influence of P.

3.3.2.1 Parabolic problems

For parabolic problems the two characteristics are identical, (Figure 3.3.3) and the
region of dependence of point P reduces to the segment BP. The zone of influence of
P, on the other hand, is the whole region right of the characteristic BP.
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Zone of influence of point P

Characteristics Region of dependence of point P

Characteristics

Figure 3.3.2 Region of dependence and zone of influence of point P for a
hyperbolic problem with two characteristics per point.

Zone of influence of point P

Figure 3.3.3 Region of dependence and zone of influence of point P for a
parabolic problem with one characteristic per point.
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P depending on and influencing
the whole region

Figure 3.3.4 Region surrounding P in an elliptic problem.

3.3.2.2 Elliptic problems

In this case, there are no real characteristics and the solution in a point P depends on all
the surrounding points, since the physical problem is of the diffusive type. Inversely,
the whole boundary ACB surrounding P, is influenced by point P (Figure 3.3.4). Hence,
one can consider that the dependence region is identical to the zone of influence, both
of them being equal to the whole of the flow domain.

3.4 TIME-DEPENDENT AND CONSERVATION FORM OF THE PDES

Although we have not specified in the previous sections the exact definition of all
the x* coordinates, the examples in these sections all refer to pure space variables,
implying a system of PDEs describing a steady flow model, that is not involving time.

However, many flow systems are time dependent, as we have seen from the deriva-
tion of the conservation laws in the first chapter, and therefore we need to analyze the
properties of the PDEs, in presence of time derivatives.

In addition, an important alternative way to simulate steady flows is obtained by dis-
cretizing the time-dependent equations in time and space and letting the time evolution
take us to the steady state solution. This is called a ‘time-marching’ approach.

Although the time-marching approach will converge to the same solution as
obtained from the stationary model, the properties of the time-dependent PDEs can
be significantly different from the properties of their associated spatial parts.

Let us illustrate this more precisely, by considering the system of # first order partial
differential equations in time and space, written in conservation form, following the
derivations seen in Chapter 1, which we rewrite here for convenience
ou - -
E—I—V-F:Q 34.1)
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where U is the column vector of the n unknown functions #/, in the m-dimensional
space x¥ (k=1,...,m). Here m is the space dimension, i.e. m =1, 2 or 3 according
to the number of space coordinates considered.

The equivalent algebraic form (with a summation convention on repeated super-
scripts or subscripts), is written as the system of n equations, for line i:

ou' aFk\' .

We consider here that this system is of first order in space; i.e., that the flux vector F
does not contain space derivatives of U.

As stated in Section 3.2, the analysis of the properties of this system relies on the
quasi-linear form, as opposed to the conservation form. This can be obtained after
introduction of the Jacobian matrices A*, where

k
K _ oF;
Yo Qu/

(3.4.3)

are the Jacobian matrix element of the flux F’ lk with respect to the variable /.
In a compact notation, the Jacobian matrix is defined by
=k , oFk
1 27 (3.4.4)
oU
With this definition, the time-dependent quasi-linear form of PDEs, derived from the
conservation form, becomes

U U
Ak —

- — 345
ot + axk 0 ( )

We see here that the stationary model, obtained when the time derivative is equal to
zero for a time-independent vector U, reduces to equation (3.2.1), withk = 1,...,m.

3.4.1 Plane Wave Solutions with Time Variable

We have now to adapt the procedures defined in Section 3.2 to the time-dependent
model (3.4.5).

To establish this link we observe that the general form (3.2.1) reduces to equation
(3.4.6), if one variable, say x" ! is singled out and the corresponding Jacobian matrix
A™F1 is taken as the unit matrix. We call this variable time like and take x"+! =¢,
with the conditions:

X"l=¢ and A" = ;(unitmatrix) (3.4.6)

With the introduction of the time variable, a plane wave solution can be written in a
more conventional way:

U = el Ko (3.4.7)
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The vector k is called the wave number vector and its magnitude is the number of
periods or wavelengths over a distance 27 in the direction of the vector k¥ and w is the
wave pulsation. This simple wave is a solution of the linear convection equation:

o +@-V)U=0 (3.4.8)

where

-

a-k=w (3.4.9)

If the direction of k is the propagation direction of the wave, then the phase velocity
in the direction of propagation is given by:

a=— (3.4.10)
K
One has also the following relation between frequency v, wavelength A, and the
variables k and @
2
r=Z w=2mv w=ua (3.4.11)
K
typical of plane waves.
The general solution (3.3.2) becomes, with the explicit time variable x"+! =¢:

U = 0 EVS+5) (3.4.12)
identifying the frequency w of the wave as

oS

_ 3.4.13
® o ny ( )

and the wave number vector « is defined by
K=VS=rn (3.4.14)

In this notation VS is the normal to the intersection of the characteristic or wavefront
surface S(¥, #) with the hypersurfaces ¢ = constant. Hence, the normals are defined
here in the m-dimensional space of the space variables, while the normals 7 defined in
Section 3.3.1 (equation (3.3.1)) are normals to the wavefront surfaces in the (m + 1)-
dimensional space x!, ..., x™T! Observe also that the wave number ¥, in the space
(x',...,x™) is normal to the characteristic subsurfaces S(%, f) at constant ¢.

In order for this wave to be a solution of the homogeneous system

WU LU
A= =0 k=1,... 3.4.15

S has to satisfy the equation

b) aS
det‘— + A4k =

S
> F| =0 (3.4.16)




Mathematical Nature of Flow Equations and Their Boundary Conditions 125

or
det |[—w8;; + KAl =0 (3.4.17)

This important condition actually defines the wave pulsations w, as the eigenvalues
of the matrix K;; = KkAg».

If we group the m matrices A in a vector 4 of dimensions m, A AL, ..., 4™, we
can write the matrix K as a scalar product:

K=4% (3.4.18)

The system is said to be hyperbolic in space and time if all the n-eigenvalues of
the matrix K are real and if the n associated solutions of equation (3.4.15) are
linearly independent.

If all the eigenvalues are complex, the system is said to be elliptic in space in
time and if some are real and other complex the system is considered as hybrid.

If the eigenvalues are purely imaginary, then the system is said to be parabolic
in space in time.

If some eigenvalues are real and other purely imaginary, the system is said to
be parabolic—hyperbolic in space in time.

Referring to equation (3.4.10), the propagation speed associated with a character-
istic frequency w is obtained as the eigenvalue of the matrix K :

K =A--=4-3 (3.4.19)

i
gl
x| =

where ¢, is the unit vector in the direction «.

Hence, for each wave number vector ¥, a perturbation in the surface normal to
K propagates in the direction of K with phase velocity @ and frequency w equal to
the eigenvalue of the matrix K = A¥ k. The associated characteristic speeds a(y) are
obtained as solutions of the eigenvalue problem:

det |[—ad; + K| =0 (3.4.20)

For an elliptic system, the eigenvalues are complex and the solution takes the form,
for an eigenvalue w; = & + In:

Uy = U e T6telkx gt (3.4.21)

Since the coefficients of the Jacobian matrices A* are considered to be real, each

eigenvalue w; = & + I is associated to a complex conjugate eigenvalue wr, =& — I,
leading to a solution of the form:

Uy = Up e ek gt (3.4.22)

Hence, according to the sign of the imaginary part of the eigenvalue, one of the
two solutions Uy or U, will be damped in time, while the other will amplified.
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Example E.3.4.1: Time-dependent shallow water equations in one dimension

The one-dimensional form of the time-dependent shallow water equations can be

written as
oh oh ou
KR
o Tl T
ou du du
— — — =0 E.3.4.1
ar M T8y ( )

where & represents the water height, g is the gravity acceleration and u the horizontal
velocity.
In matrix form, we have

9
ot

h

u

u h
g u

K
ox

h

. (E3.4.2)

The two characteristic velocities aj, are obtained from equation (3.4.20) as
solutions of

—a+u h

aul=0 (E3.4.3)

det ‘

or

alp =u=x./gh (E.3.4.4)

Since these eigenvalues are always real, the system is always hyperbolic in (x, 7).

Example E.3.4.2: Time-dependent Euler equations in one dimension

Let us consider, as a second example, the one-dimensional form of the time-dependent
Euler equations, for isentropic flows.

This is obtained by adding a time derivative of density and x-velocity component
to the first two equations of the system (I3.1), leading to

0 0, ou
87’0 + Ma£ + ,03* =0
¢ x X (E3.4.5)
du u 2 ap
—tu—+——=0
ot ox p ox
or in matrix form, defining the vector U and the matrix 4:

_lel 4| u »p

U= " o u (E.3.4.6)
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as

iU oUu
A —

= =~ 0 E.3.4.7
ot + ax ( )

Equation (3.4.7) becomes, in one space dimension x:
U = Ueltv—n (E.3.4.8)

and the condition (3.4.17) reduces to the eigenvalue equation:

UK — pk |
det cp uk—w| 0 (E.3.4.9)
The two eigenvalues
ag=wi/k=u+c and ay=wy/k=u—c (E.3.4.10)

are real, for all values of the velocity «, and hence the system is always hyperbolic in
space and time.

This is an extremely important property comparing to the analysis of Example
E.3.2.2 (confirmed by Example E.3.2.3) where it is shown that the steady isentropic
Euler equations are elliptic in the space (x, y) for subsonic velocities and hyperbolic
in the space (x, y) for supersonic velocities.

Here, in space and time, the inviscid isentropic equations are always hyperbolic
independently of the subsonic or supersonic state of the flow. As a consequence, the
same numerical algorithms can be applied for all flow velocities.

On the other hand, dealing with the steady state equations, the numerical algo-
rithms will have to adapt to the flow regime, as the mathematical nature of the
system of equations is changing when passing from subsonic to supersonic, or
inversely.

This is the main reason for the very widespread choice of the time-dependent
form of the conservation laws as basis for the numerical discretization, even for the
simulation of steady flows.

In this approach, we solve the flow equations in time until a numerical steady state
is reached, while the numerical transient is defined in such a way as to reach the steady
state as fast as possible, through different numerical acceleration techniques, such as
local time steps, multigrid. These techniques will be introduced later on.

Take very carefully notice of the above fundamental property, as it conditions a
wide area of CFD applications.

Itis indeed considered as a major advantage to be in a position to develop numer-
ical algorithms, without having to bother about the subsonic or the supersonic state
of the flow.

The following example demonstrates that this property is not restricted to one
space dimension. It is indeed valid for all dimensions, and is shown here for two
space dimensions, considering the time-dependent form of the system (13.1).
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Example E.3.4.3: Time-dependent Euler equations in two space dimensions

The time-dependent form of system (I3.1) for the two-dimensional isentropic Euler
equations is written as
ap ap ap du av

a Va0

du du w2 ap
— — — 4+ ——=0 E.3.4.11
Bt+u3x+vay+p8x ( )
av v v o

A
o o e T oy

0

With the same definitions as in Example E.3.2.2, the system is written in the matrix
form (3.4.15):

U U U
— A=+ A= =

0 (E.3.4.12)
ot ox ay

and the eigenvalue equation (3.4.17) becomes

U-K—w PKx PKy
det| Pue/p U-K—w 0 =0 (E.3.4.13)
ctiey/p 0 U-K—w

The three solutions are given by the following three pulsations:

W =u-K
Wy = U-K+ck (E.3.4.14)
w3 = U-K—Ck

and as they are always real, the system (E.3.4.11) is always hyperbolic in space
and time.

3.4.2 Characteristics in a One-Dimensional Space

The particular case of the one-dimensional space allows obtaining an important prop-
erty of hyperbolic systems, typical for time-dependent first order equations, such as
the Euler equations.

For a general nonlinear equation of the form:

— 4+ a(u)— =0 (3.4.23)
X
the above formalism, see in particular equation (3.3.5), defines the characteristics in
the space—time domain (x — ¢), as

@ _ S m_ 1 (3.4.24)
dx S; n, a(u) o
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Hence, we can state that the general solution of the nonlinear convection equation
(3.4.23) is given by the characteristic property:

d
4= Const along dit‘ = a(u) (3.4.25)

3.4.3 Nonlinear Definitions

The n-eigenvalues of the matrix (3.4.18) define the n dispersion relations for the
frequencies w(q):

(@) = o)k, 1)) (3.4.26)
Note that a nonlinear wave can be only written under the form (3.4.7) with:

k= KX, 1)

® = o(k(X,1)) (3.4.27)
and the same local definition of wave number and frequency, under certain conditions.

Indeed, when introduced in equation (3.4.7), the above nonlinear solution gives the
following contributions:

U P LY D P S L
a O T | T @IV
(3.4.28)
U _ NS + G- 1Y) 0K
— = kK —t— +X - — [ =1U|kp + X — tVw) - —
axk k axk axk k “ axk

The derivative of the frequency with respect to the wave number component «; is the
j-component of the group velocity of the wave

0
WO = X2 (3.4.29)
aKj
or, in condensed notation,
V9 = Vew (3.4.30)

The terms within the round brackets in equation (3.4.28) will vanish for an observer
moving with the group velocity, i.e. for

=Vo (3.4.31)

Note that the group velocity is the velocity at which the wave energy propagates. The
interested reader will find an extensive discussion of nonlinear waves in Whitham
(1974).
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3.5

INITIAL AND BOUNDARY CONDITIONS

The information necessary for the initial and boundary conditions to be imposed
with a given system of differential equations in order to have a well-posed problem
can be gained from the preceding considerations. Well-posedness in the sense of
Hadamard is established if the solution depends in continuous manner on the initial
and boundary conditions. That is, a small perturbation of these conditions should give
rise to a small variation of the solution at any point of the domain at a finite distance
from the boundaries.

Two types of problems are considered with regard to the time variable #: an initial
value problem or Cauchy problem where the solution is given in the subspace t =0
as U =U(X, t =0) and is to be determined at subsequent values of 7. If the subspace
¢t =0 is bounded by some surface () then additional conditions have to be imposed
along that surface at all values of ¢ and this defines an initial-boundary value problem.

A solution of the system of first order partial differential equations can be written as
a superposition of wave-like solutions of the type corresponding to the n-eigenvalues
of the matrix K:

n
U= Uye'@Few) (3.5.1)

a=1

where the summation extends over all the eigenvalues w(y), U being the column
containing the unknowns u/.

If N, and N, denote, respectively, the number of real and complex eigenvalues,
considered to be of multiplicity one, with n=N, + N,, it is seen from equation
(3.4.21) that the complex eigenvalues will generate amplified modes for n > 0. If
such a mode is allowed the problem will not be well-posed according to Hadamard.
Therefore, the number of initial and boundary conditions to be imposed have to be
selected as to make sure that such modes are neither generated nor allowed. If the
problem is hyperbolic, N, = 0 and N, = n and since no amplified modes are generated,
n initial conditions for the Cauchy problem have to be given in order to determine
completely the solution.

That is, as many conditions as unknowns have be given at t = 0. On the other hand,
if the problem is elliptic or hybrid, there will be N./2 amplified modes, and hence
only N, + N./2 conditions are allowed. Since this number is lower than 7, the pure
initial value or Cauchy problem is not well posed for non-hyperbolic problems and
only boundary value problems will be well-posed in this case. The inverse is also true,
a pure boundary value problem is ill-posed for a hyperbolic problem.

For an elliptic system N, = 0 and the number of boundary conditions to be imposed
at every point of the boundary is equal to half the order of the system. For instance,
for a second order hyperbolic equation two conditions will have to be fixed along the
initial Cauchy line, while for a second order elliptic equation one condition will have
to be given along the boundaries.

For hyperbolic problems, the n boundary conditions have to be distributed along
the boundaries at all values of ¢, according to the direction of propagation of the
corresponding waves. If a wave number ¥ is taken in the direction of the interior
normal vector 7, then the corresponding wave, whose phase velocity is obtained
as eigenvalue of the matrix (4¥ny), will propagate information inside the domain
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if this velocity is positive. Hence, the number of conditions to be imposed for the
hyperbolic initial-boundary value problem at a given point of the boundary is equal to
the number of positive eigenvalues of the matrix 4¥n; at that point. Refer to Chapter
11, section 11.4.1.3 for a detailed application to the 2D system of time-dependent
Euler equations. The total number of conditions remains obviously equal to the total
number of eigenvalues that is to the order of the system.

For hybrid problems, the conclusions are the same for the real characteristics,
but N./2 additional conditions have to be imposed everywhere along the boundary.
Note also that, next to the number of boundary conditions to impose, the nature of
these conditions can also be important in order to avoid ill-posed conditions along
the boundaries.

Parabolic problems in t and X define initial-boundary value problems. Hence, the
solution is to be defined at # = 0, that is for an order », n conditions have to be given at
t =0. Along the boundaries for all times, #/2 boundary conditions have to be imposed.
This is the case for the standard form of parabolic equations d;u = L(u), where L(u)
is a second order elliptic operator in space.

A more complex parabolic structure arises in boundary layer theory, where the
equations are of the form u,, = L(u) where L(u) is a hyperbolic first order operator in
the space x, y, z, with y the coordinate normal to the wall. This leads to complex mixed
parabolic—hyperbolic phenomena in space for three-dimensional boundary layer cal-
culations. Some of these aspects are described in Krause (1973) and Dwyer (1981).
The boundary conditions are of the initial value type for the hyperbolic components
and of boundary value nature for the elliptic parts of the system.

The whole system of Navier—Stokes equations is essentially parabolic in time and
space or parabolic—hyperbolic while the steady state part is elliptic—hyperbolic due to
the hyperbolic character of the continuity equation considered for a known velocity
field. On the other hand, in absence of viscosity and heat conduction effects, the
system of time-dependent Euler equations is purely hyperbolic in space and time.

The various approximations to the Navier—Stokes equations discussed in this chap-
ter have evidently different mathematical properties. For instance, in the thin shear
layer approximation or the boundary layer approximations, the diffusive effect of
viscosity is neglected in all directions except in the directions normal to the wall.
Therefore, the resulting equations remain parabolic in time and in the direction nor-
mal to the surface, while the behavior of the system will be purely hyperbolic in
the other two directions and time. The global property remains, however, parabolic
although the local behavior of the system is modified compared to the full Navier—
Stokes model. This leads to important consequences for the numerical simulation of
three-dimensional boundary layers, see Dwyer (1981) for a review of these issues.

From mathematical point of view, no general, global existence theorems for the
non-stationary compressible Navier—Stokes equation with a defined set of boundary
and initial conditions can be defined. Some partial, local existence theorems have been
obtained (see Temam, 1977; Solonnikov and Kazlikhov, 1981), for both the Cauchy
problems, i.e. given distributions of density, velocity and temperature at time 1 =0,
and for initial-boundary value problems where the flow parameters are given at t =0
and boundary conditions are imposed at all times for velocity and temperature on the
boundary of the flow domain. These investigations do not lead presently to practical
rules for the establishment of boundary conditions and, therefore, case-by-case con-
siderations have to be used in function of the type of the equations and of physical
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properties of the system. In general, the elliptic time-independent problems will
impose the values of the flow variables (Dirichlet conditions) or their derivatives (Neu-
mann conditions) on the boundaries of the flow domain. From physical considerations,
for fluid conditions far away from the molecular free motions (Knudsen numbers
below 10~2) the velocity should be continuous at the material boundaries. This leads
to the well-known no-slip conditions for the velocity for the Navier—Stokes equations.

For the temperature one of the following three conditions can be used, 7, being
the wall temperature:

T=T, fixed wall temperature — Dirichlet condition
oT ..
ka— =q fixed heat flux — Neumann condition
n
oT .
k— =a(T — T,,) heat flux proportional to local heat transfer

on (mixed condition)

For other elliptic equations such as the subsonic potential or stream function equa-
tions the choice will be made on the basis of the physical interpretation of these
functions and this will be discussed in the appropriate chapters.

Inviscid flow equations, being first order, allow only one condition on the velocity,
namely that the velocity component normal to the wall is fixed by the mass transfer
through that wall, while the tangential component will have to be determined from
the computation and will generally be different from the non-slip value, since slip
velocities are allowed. For free surfaces, the physical conditions are chosen on the
basis of continuity of the normal and tangential stresses and of the statement that the
free boundary is a stream surface.

A.3.6 ALTERNATIVE DEFINITION: COMPATIBILITY RELATIONS

An alternative definition of characteristic surfaces and hyberbolicity can be obtained
because wavefront surfaces carry certain properties and that a complete description of
the physical system is obtained when all these properties are known. This implies that
the original system of equations, if hyperbolic, can be reformulated as differential
relations written along the wavefront or the characteristic surfaces only. Hence, the
following definition can be given: A characteristic surface S(x',...,x™)=0 will
exist, if the first order system of equation (3.2.1) can be transformed, through a linear
combination of the form, where the I’ are n arbitrary coefficients:

Y :
i gk 7. ;o —
lAijax—k_lQl hj=L...,nk=1,....m (3.6.1)
into an equivalent system containing only derivatives along the surface S. Along the
surface S(x1 ,...,x™)=0 one of the coordinates can be eliminated, for instance x",
by expressing

ds = dx* =0 (3.6.2)
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or, along the surface S

axm

axk

_as/xt om
s AS/m my

(3.6.3)

where the components of the normal vector 7 = VS are introduced. Hence, we can
define derivatives 9/ o along the surface S, in the following way. For any variable
u/ the partial derivative 9/ e along the surface S is given by

0] a oax™ a a ny a
= — —=— =)= k=1,.., 3.6.4
oxk  9xk + <8xk> gox™m  oxk (nm> oxm " (364

Note that for the variable x” the surface derivative is zero, i.e. 3/dx = 0. Introducing
this relation into the linear combination (3.6.1), leads to

,iAg[aJr("k) 9 }/zlt‘gi (3.6.5)

Ak Ny ) Ox™

The summation over k extends from k£ = 1 to k = m. A characteristic surface will exist
for any u/ if the system is reduced to the form (3.6.1).
This is satisfied if the surface S obeys the relations, for any u/

I'dfne =0 (3.6.6)
3

llAga—k=0 ij=1,....nk=1,...,m (3.6.7)
X

The conditions for this homogeneous system, in the I/ unknowns, to be compatible
are the vanishing of the determinant of the coefficients, leading to the condition (3.2.5).
For each solution 7#®) of equation (3.2.5), the system (3.6.7) has a non-trivial solution
for the coefficients /"), up to an arbitrary scale factor. The 1@ coefficients can be
grouped into a (n x 1) line vector /(¥ The system is said to be hyperbolic if all the
n characteristic normals #(® = VS©@ are real and if the n vectors /() (x=1,...,n),
solutions of the n systems of equations (3.6.7) are linearly independent.

A.3.6.1 Compatibility Relations

The reduced form (3.6.1) expresses that the basic equations can be combined to a
form containing only derivatives confined to a (n — 1)-dimensional space. That is,
the system of equations, if hyperbolic, can be considered as describing phenom-
ena occurring on hypersurfaces S©. Indeed, defining a set of n vectors Z] in the
m-dimensional space with components ij, j=1,...,nk=1,...,mby the relations

k _ qi 4k
zF =14k (3.6.8)
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equation (3.6.1) can be rewritten as

Zkaiuj

o =0 (3.6.9)

The vectors ZJ define n characteristic directions of which (n — 1) are independent. The
operators (ij o) are the derivatives in the direction of the vector Z;. Hence defining

Axd 5
42 2fo =5V (3.6.10)

in the m-dimensional space, the transformed equation (3.6.1) can be written as a
derivatives along the vectors Z;:

dw =Z; -Vl = I'Q; (3.6.11)
The above equation is known as the compatibility relation, and represent an alternative
formulation to the system (3.2.1). Condition (3.6.7) expresses that all the Z; vectors

lie in the characteristic surface whose normal is 7. Indeed, equation (3.6.7) becomes,
with the introduction of Z;

Zi-ii=Zfn =0 forallj=1,...n (3.6.12)

These phenomena correspond to propagating wavefronts, as seen earlier, and it can
be shown (see for instance Whitham, 1974) that the characteristic surfaces can also
contain discontinuities of the normal derivatives 9t/ /9n, satisfying

o/
Af;-nk[—] —0 (3.6.13)
n

o o/ o
Zl=( =) (= (3.6.14)
on on J on ) _
is the jump, over the surface S, of the normal derivatives of the solution w. This
relation can also be written:

]
1y =0 (3.6.15)

on

where d/0n is the normal derivative to the surface S. The corresponding vectors I are
obtained from equation (3.6.6), written as

Iy +Akn) =0 k=1,...,m—1 (3.6.16)
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or
I'Kj = Moyl'8yy ij=1,...,na=1,...,n (3.6.17)

Hence, the vectors I@of components /@ are the left eigenvectors of the matrix K
corresponding to the eigenvalues A (y). If the n eigenvectors 1 are linearly indepen-
dent, the system will be hyperbolic. If the n eigenvectors I@are grouped in a matrix
L1, where each row contains the components of an eigenvector /™, i.e.

(L) =1 (3.6.18)
we obtain from the eigenvector equation (3.4.13) that the matrix L diagonalizes the
matrix K:

L'KL=A (3.6.19)

where A is the diagonal matrix containing the eigenvalues A(q):

)
A= ) (3.6.20)

0 )\(n)

It is also interesting to notice that, within the same assumptions, the intensities of the
propagating disturbances are the right eigenvectors (% of K, since equation (3.6.13)
can be written as

Kij vl = hyr' 8 (3.6.21)

Example E.3.6.1: Small disturbance potential equation

The two vectors / associated to the two characteristic normals (E.3.3.2) are obtained
from the system (3.6.6), which is written here as

(1 — M2)ny n,
—hny, ny

(1'% =0 (E.3.6.1)

where the ratio A =n,/n, is defined as the solutions (E.3.3.2). Choosing I'=1, the
system (E.3.6.1) has the solution:

=1

RN (E3.6.2)
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The two characteristic directions Zj defined by equation (3.6.8), become here
Zi = (1 =M% 0)
Z=(=n1) (E.3.6.3)

Observe that these two directions are parallel to each other, since A% = (MgO —1)and
that their common direction is the characteristic line of Figure E.3.3.1, making the
angle u with the x-direction, since A = cos p/sin p. This can also be seen from a direct
verification of equation (3.6.12), with the vector of the characteristic normal defined
by the components 7 = (1, A), which indicates that the Z-directions are orthogonal to
the normals #n. The compatibility relation (3.6.9) or (3.6.11) becomes here

a M2)3+A3 it |22+ 220 (E.3.6.4)
o7 y o dy| o
or
a .0 d ) a
cotiufcosu— Fsinpu— lukx|cosu— Fsinu— |v=0 (E.3.6.5)
ox ay ox ay

For constant Mach angles p, the compatibility relation expresses the property that the
velocity component along one characteristic (ucos i &= vsin w) is conserved along
the other characteristic.

CONCLUSIONS AND MAIN TOPICS TO REMEMBER

This chapter has introduced the general methodology for the determination of the
mathematical properties of a system of PDEs, defining a selected approximation
model of the flow system.

It is of crucial importance to identify and distinguish when a system of PDEs
describes convection, or diffusion, or mixed phenomena.

The main topics to remember are:

e A system of quasi-linear partial differential equations is hyperbolic if its homo-
geneous part admits wave-like solutions. In other words, a hyperbolic system
describes convection phenomena and inversely, convection phenomena are
described by hyperbolic equations.

e Ifthe equations admit damped wave solutions the system will be called parabolic.

e If the equations do not admit wave-like solutions, they are elliptic, and
the behavior of the physical system considered is dominated by diffusion
phenomena.

e Characteristic surfaces represent an important property of hyperbolic systems,
as they are associated to the propagation phenomena.

e The notions of domain of dependence and zone of influence are very essential
properties of PDEs and should be kept in mind in all cases.



Mathematical Nature of Flow Equations and Their Boundary Conditions 137

e Steady inviscid flows have the property of being elliptic in the subsonic range
and hyperbolic in the supersonic regions.

e Time-marching methods for steady state problems offer the great advantage that
their properties in space and time are independent of the Mach number. In the
inviscid case, they are always hyperbolic in space and time, for all values of the
Mach number.
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PROBLEMS

P.3.1 Show that the system of Cauchy—Riemann equations

du v
—+—=0
ox  ady

v  Jdu .
ox  dy

is of elliptic nature.

P.3.2 Consider the two-dimensional stationary shallow water equations describing
the spatial distribution of the height 4 of the free water surface in a stream
with velocity components « and v. They can be written in the following form,
where g is the earth’s gravity acceleration:

oh oh a 0

u— + v——{—h—u—i—h—v =0
ox ay ox ay
ou ou oh

u
ox ay ox
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(a) Introduce the vector

h
U=|u
v

and write the system (E.3.2.8) under the form (3.2.3).
(b) Obtain the three characteristic normals 7, as solutions of equation (3.2.5),
by defining A = ny/n,. Show that we obtain

A= Y
u

and the two solutions of the quadratic equation:

W — g+ 2av + (v —gh) =0

O3 _ T +/gh/u? +v* — gh
N u? —gh

Observe that \/g7 plays the role of a sonic, critical, velocity and the
system is hyperbolic for supercritical velocities v> = u? + v > gh.
P.3.3 Show that the one-dimensional Navier—Stokes equation without pressure
gradient (known as the ‘viscous’ Burger’s equation)

ou n ou 8%u
oy — g
ot ox ox2
is parabolic in x, .
Hint: Write the equation as a system, introducing v = du/dx as second

variable and apply equation (3.2.5) to show that the matrix is not of rank 2.
P.3.4 Consider the one-dimensional Euler equations:

ap op ou

i -z ~Z 0
o Vo T P

ou ou 1lap

- 4 F
o T T o

OH  9H 1
— 4 u— = ——=

ot x  por

Introduce the isentropic assumption dp/dp = c2, with ¢ the speed of sound
and replace the third equation by an equation on the pressure, by applying the
perfect gas laws and the definition of H. Obtain the equation:

Write the system in matrix form for the variable vector:
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Show that the system is hyperbolic and has the eigenvalues u, u+ c and u — c.
Obtain the left and right eigenvectors.
P.3.5 Consider the system

u 1ou ov
a T O
o  ox 2o0x

(a) Write the system in matrix form (3.4.5) and obtain the matrix 4:

A— =0 withU =

oU 4 oU u
ot ox

(b) Find the eigenvalues of A and show that the system is hyperbolic.

(c) Derive the left and right eigenvectors and obtain the matrix L which
diagonalizes A. Explain why the left and right eigenvectors are identical.

(d) Obtain the characteristic variables and the compatibility relations.

Hint: The eigenvalues of 4 are 3/2 and —1/2. The matrix L has the form:

L)1 1
L=l 4|

The characteristic variables are
(u+vV2 and (u—v)V2

The compatibility relations are

8(u+v)+§8(u+v) _ o

ot 2 ox
d(u —v) 18(u—v)_0
at 2

P.3.6 Consider the steady potential equation (E.3.2.18) for supersonic flows, M > 1.
From Example E.3.2.3, it is known that the equation is hyperbolic. Obtain the
two vectors /¥, @ = 1, 2 associated to the two characteristic normal directions
7@ solutions of equation (3.2.11). Show that the two characteristics form an
angle +u with the velocity vector v, with sin u = 1/M. The angle u is called
the Mach angle.

Hint: Define B as the angle of the velocity vectorby cos B=1u/|v|, sin B=v/|V|
Setting ny =1 shows that n, =—cotan(f4 u). Selecting /; =1, obtain
I, = —cny, from equation (3.2.2).

P.3.7 Show that for the transformation leading to equation (3.4.5) AZ’ =J;;, the

characteristic directions (3.6.8) become

zjk =145 k=1,....m—1
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P3.8

P3.9

Form the (n x m) matrix Z and note that the last line (j being the column
index) is formed by the vector /.

Show that the orthogonality condition (3.6.12) is equivalent to equation
(3.6.17) and that we have, for a wave number vector «:

Zip = M's;

Referring to the one-dimensional shallow water equations treated in Example
E.3.4.1, find the eigenvectors [@ a=1,2 as well as the characteristic vectors
71 and Z,. Derive also the compatibility relations (3.6.11).

Hint: Show that the left eigenvectors are proportional to /[, & \/iT and that
the characteristic vectors have the components:

uif‘ uif’

Show that we obtain

oh oh  h(0d 9
Sk Ve S S gk =0
ot ox ot ox

g

where the upper signs are to be taken together for the first and the lower signs

for the second compatibility relation.

Consider equation (3.2.6) and write also the compatibility relation (3.6.11) after

having defined the characteristic directions Z, according to equation (3.6.8).
Hint: Obtain

>

a Zz=|

—2b + cny

—cny

Z =
! C

and verify equation (3.6.12). Note also that 71 and Z, are in the same direction,

since they are both orthogonal to 7. Show by a direct calculation that the
vector product of 4 1 and Z; is indeed zero. Referring to the general form of
equation (3.2.6), obtain the compatibility relation

ou ou
aa + (cny — 2b)$ — cnya +c—=0



Part Il
Basic Discretization Techniques

Having defined in Part I, the mathematical models for fluid dynamics and a method-
ology for analyzing their fundamental properties in Chapter 3, we are now ready
to move on to the next step toward setting up a CFD algorithm, namely the
discretization phase.

Asoutlined in Figures 1.2.1 and 1.3.1, to which we refer you again, this second step in
the definition of the computational approach deals with the choice of the discretization
method of the selected mathematical model and involves two components, the space
discretization and the equation discretization.

The space discretization consists in setting up a mesh, or a grid, by which the
continuum of space is replaced by a finite number of points where the numerical values
of the variables will have to be determined. It is intuitively obvious that the accuracy
of a numerical approximation will be directly dependent on the size of the mesh, that
is the closer the points, the better the discretized space approaches the continuum,
the better the approximation of the numerical scheme. In other words, the error of a
numerical simulation has to tend to zero when the mesh size tends to zero, and the pace
of this variation will be characterized by the order of the numerical discretization.

For complex geometries the solution will also be dependent on the form of the mesh,
since in these cases we will tend to develop meshes which are adapted to the geomet-
rical complexities, as for flows along solid walls, and the mesh shape and size will
vary through the flow field. Therefore, the generation of grids for complex geometries
is a crucial problem, whose importance increases with the space dimension, making
this step the most significant in three-dimensional CFD simulations.

As described already in the general introduction, we distinguish between structured
and unstructured grids, the latter being of more general nature. Structured grids are
formed by families of lines (one for each space dimension), each mesh point being
at the intersection of one line of each family and correspond to Cartesian grids in the
mathematical space of the curvilinear coordinates. In unstructured grids, the mesh
point distribution is arbitrary since they are not localized on identified lines and they
can be connected through various polynomials in 2D or polyhedrals in 3D.

Grid generation and grid quality are essential elements of the whole discretization
process. Not only is grid generation today a most critical element in the cost of running
CFD simulations, but more importantly, the accuracy of the obtained numerical
results is critically dependent on mesh quality .

In recent years methods have been, and still are developed in order to generate
efficiently and as automatically as possible meshes adapted to arbitrary geometries.

141
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We will devote Chapter 6 of Part II to a presentation of different grid types and their
properties, with some considerations and recommendations related to grid quality
and grid-related errors.

Once a mesh has been defined, the equations can be discretized leading to the
transformation of the differential or integral equations to discrete algebraic operations
involving the values of the unknowns related to the mesh points. The basis of all
numerical methods consists in this transformation of the mathematical model into
an algebraic, linear or nonlinear, system of equations for the mesh-related unknown
quantities.

A very important aspect in the definition of an algorithm is the choice to be made
between a time-dependent or steady state model for the flow equations, as mentioned
already in Chapter 3.

For physical time-dependent problems with a transient flow behavior or connected
to time varying boundary conditions, there is obviously no alternative to the use of
a time-dependent mathematical model as time accuracy of the numerical solution is
required.

However, with stationary or steady state problems, an alternative exists and you
can decide to work either with a time-independent mathematical model of your flow
problem or to use an unsteady formulation and follow the numerical solution in
time until the steady state is reached. This last family of methods is often called
‘time marching’ or ‘pseudo unsteady’ since the time accuracy is not required and
we attempt to reach the steady state in the smallest possible number of time steps,
without requiring the correct numerical simulation of the transient behavior. In this
case, the numerical schemes will rely on the solution of systems of ODEs in time,
while in the former case the numerical solution techniques will have to rely on the
methods for solving algebraic systems of equations (in space).

This has been explained already in Chapter 3 and the advantages of the time-
dependent formulation, whereby the properties of the equations do not change when
passing from subsonic to supersonic flow conditions, have been stressed. Another
very important advantage of the time dependent formulation is related to the fact that
many flow configurations do not have a steady state behavior, even in presence of
stationary boundary conditions. A most popular example is the flow over a cylinder,
characterized by the presence of a periodic vortex shedding, for Reynolds numbers
high enough (typically above ~40), as shown in Section 2.1. This flow has no steady
state solution and hence attempting to solve the time-independent flow equations,
will lead to non-physical solutions, or to no solution at all.

It is essential to be aware that, seen at small enough length scales all turbu-
lent flow configurations are unsteady and that steady state flow conditions are the
exception and not the rule. Although in practice, as we do not always look at the
fine scales, many flows appear as steady.

For instance, the flow along an aircraft wing, under constant upstream conditions,
considered at the level of the Reynolds averaged turbulent approximation (RANS
model), may appear as steady, provided there is no large-scale separation. Since
nearly all separated flow regions tend to have an unsteady behavior when the grid is
refined, it is required to work with a mathematical model that is capable of detecting
large-scale unsteadiness, as they appear.

Therefore, we recommend working with the time-dependent equations, unless
there is an assurance that the flow will remain steady. However, even in this case there
is no significant advantage in working with the stationary flow models.
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For all those reasons, we are focusing on the discretization properties of time-
dependent algorithms as the most general approach.

We will show, however, in the later Chapters 9 and 10, that bridges can be estab-
lished between the two approaches, and they can be viewed as belonging to a common
family of schemes, when iterative methods are applied for the resolution of the
algebraic systems resulting from the space discretization.

With time-dependent numerical formulations, we will distinguish two families of
methods, explicit or implicit. In explicit methods, the matrix of the unknown variables
at the new time is a diagonal matrix while the right-hand side of the system is being
dependent only on the flow variables at the previous times. This leads therefore to a
trivial matrix inversion and hence to a solution with a minimal number of arithmetic
operations for each time step. However, this advantage is counter-balanced by the fact
that stability and convergence conditions impose severe restrictions on the maximum
admissible time step. While this might not be a limitation for physical unsteady
problems, it leads to the necessity of a large number of time steps in order to reach
the steady state solution corresponding to a physical time-independent problem.

In implicit methods, the matrix to be inverted is not diagonal since more than
one set of variables are unknown at the same time level. In many cases however,
the structure of the matrix will be rather simple, such as block pentadiagonal, block
tridiagonal or block bidiagonal, allowing simple algorithms for the solution of the
system at each time step, although the number of operations required will be higher
when compared to the explicit methods. This is compensated by the fact that many
implicit methods have, at least for linear problems, no limitation on the time step and
hence a lesser number of iterations will be needed to reach the steady state.

In summary, the following steps have to be defined in the process of setting up a
numerical scheme:

(i) Selection ofadiscretization method of the equations. This implies the selection
between finite difference, finite volume or finite element methods as well
as the selection of the order of accuracy of the spatial and eventually time
discretization.

(i) Analysis of the selected numerical algorithm. This step concerns the analysis
of'the ‘qualities’ of the scheme in terms of stability and convergence properties
as well as the investigation of the generated errors.

(iii) Selection of a resolution method for the system of ordinary differential equa-
tions in time, for the algebraic system of equations and for the iterative
treatment of eventual nonlinearities.

Step (i) will be discussed in Part I, Chapters 4—6; step (ii) will be addressed in
Part ITI, Chapters 7 and 8 and step (iii) in Part IV, Chapters 9 and 10.

THE STRUCTURE OF PART Il

In Part II, we will introduce you to the most important methods for the discretization of
the space derivatives entering in the conservation laws. Three families of methods are
available, with varying degrees of generality. The most traditional and oldest method
is the finite difference method (FDM), which remains the reference for all studies of
numerical discretization, although it is only applicable in practice to structured grids.
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Therefore, it is very important that you develop a strong understanding of the main
properties of finite difference formulas.

By far the most widely applied method today in CFD is the finite volume method
(FVM), which discretizes directly the integral form of the conservation laws. Its
popularity is due to its generality, its conceptual simplicity and the relative ease of
application to both structured as well as to any kind of unstructured grids. A large
body of literature has been developed around the FVM and we will introduce its
main properties. Although the FV discretization will lead to similar formulas as a
FDM when applied to structured grids, it is equally important that you develop a
good understanding of the main properties of FVMs. This will help you to follow the
developments behind current CFD tools and to better interpret the results obtained
by applying for instance commercial CFD codes to practical problems.

The third method is derived from the world of structural mechanics, where the finite
element method (FEM) is most widely, if not exclusively, applied. Its application
to CFD is of interest, but is not dominant and we will restrict ourselves to a short
presentation, at advanced level, mainly oriented at its basic properties and its relation
with the finite volume method.

Although the analysis of discretization methods is best performed on uniform grids,
this is seldom the case in practice, where geometrical complexities can lead to highly
irregular and distorted grids. Due to the strong influence of the grid properties on
the quality of the CFD results and the associated loss of accuracy, it is important to
develop an understanding of these effects and to extract possible guidelines on grid
quality in order to reduce the associated numerical errors. This will be introduced in
Chapter 4 on a one-dimensional basis, and further discussed in Chapter 6.

This second part is therefore organized in three chapters:

1. Chapter 4 deals with the basic method for the discretization of PDEs, namely
the finite difference method (FDM), which can be applied to any structured
mesh configuration.

2. Chapter 5 will cover the fundamentals of what is today the most widely applied
discretization method, valid for both structured and unstructured grids, the finite
volume method (FVM ). Some advanced sections will introduce the essentials
of'the finite element method (FEM), which is the reference method in structural
mechanics, but is also applicable to fluid mechanics.

3. Chapter 6 will introduce the important issue of mesh properties. As stated in the
introduction, two families of grids can be selected: structured or unstructured,
the latter being the most general option. This chapter is not oriented at the
techniques for grid generation, which are quite specialized and outside the scope
of this book. Several excellent publications can be consulted on this subject and
references will be given in Chapter 6. Instead, this new chapter will present
the different grid types as encountered in CFD and will focus on issues of grid
generated errors, grid quality and provide some best practice recommendations
on grid properties in order to minimize the grid-related error sources.



Chapter 4

The Finite Difference Method for
Structured Grids

OBJECTIVES AND GUIDELINES

The Finite Difference Method (FDM) is based on the properties of Taylor expansions
and on the straightforward application of the definition of derivatives. It is probably
the simplest method to apply, particularly on uniform meshes, but it requires the mesh
to be set up in a structured way, whereby the mesh points, in an #-dimensional space,
are located at the intersections of » families of lines and each point must lie on one,
and only one, line of each family.

In Section 4.1, we explain the basic steps toward the establishment of finite dif-
ference formulas and introduce the very important concept of order of accuracy, as
applied to first and second derivatives. It will be immediately clear from this section
and further confirmed in the subsequent sections, that an unlimited number of FD
formulas can be derived for any derivative. This implies that for any partial differential
equation (PDE) of a mathematical model, we will have an infinite number of possi-
ble numerical schemes. This richness of numerical algorithms makes the selection
process and the associated criteria a challenging and altogether exciting issue and we
hope to guide you in this wonderful world and to share with you the sense of beauty it
can provide. This will be directly illustrated on the simplest one-dimensional model
equations for linear convection and linear diffusion.

In Section 4.2, we introduce the extensions of FD formulas for partial derivatives
in two dimensions, on uniform structured grids. This extension can be applied to
single or mixed derivatives of any order. Although Section 4.2 is restricted to two-
dimensional space, its extension to three dimensions is straightforward. A particular
attention is given to finite difference formulas for the very important Laplace equation,
which is the standard equation describing diffusion phenomena.

In Section 4.3, we introduce some issues related to FD formulas on non-uniform
grids, in one-dimensional space. This section is of great importance, since most
of the grids used in practical CFD simulations are non-uniform. We will show that
standard FD formulas can easily loose at least one order of accuracy, when applied
to a non-uniform grid. In addition to the derivation of representative FD formulas,
the presented analysis will provide some recommendations to be considered when
dealing with non-uniform grids.

We consider Section 4.3 as one of the most important of this chapter, and recommend
that you give a particular attention to its content and its conclusions.

The two following sections are of a more advanced level and we suggest considering
this section for a more advanced course. They will be marked as ‘Advanced’ in the
roadmap of Figure 4.0.1.

145
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Figure 4.0.1 Roadmap to this chapter.

In Section 4.4, we introduce a general methodology to obtain arbitrary FD for-
mulas for any derivative, with a prescribed order of accuracy. This section is based
on general mathematical expressions for finite difference operators, linking them to
the related differential operator, establishing at the same time the associated order of
accuracy and the dominant truncation error. This applies to derivatives on a uniform
one-dimensional mesh. The presented framework has a large range of application and
is of particular interest for the derivation and properties of FD formulas for higher
order derivatives.

Section 4.5 deals with the derivation of implicit FD formulas, defined as expres-
sions where derivatives at different mesh points appear simultaneously. This approach
is an alternative to the standard FD formulas, for high orders of accuracy. It is shown
in Section 4.4 that in order to achieve high orders of accuracy, more mesh points have
to be involved. Typically, an FD formula for a first derivative with order of accuracy
n, will generally require contributions from at least (n+ 1) points. Hence, we can
ask the question if we could generate high accuracy FD formulas, with a restricted
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number of points, defining hereby compact formulas. The answer to this question
is positive, leading to compact, implicit schemes, which can be of interest when
high order accuracy is required, for instance in simulations such as direct numerical
simulation (DNS), large eddy simulation (LES) for turbulent flows, computational
electromagnetic (CEM) or computational aero acoustic (CAA).

The roadmap of this chapter is summarized in Figure 4.0.1.

4.1 THE BASICS OF FINITE DIFFERENCE METHODS

The finite difference approximation is the oldest of the methods applied to obtain
numerical solutions of differential equations, and the first application is attributed to
Leonhard Euler (1707—1783) in 1768. The idea of finite difference methods is actually
quite simple, since it corresponds to an estimation of a derivative by the ratio of two
differences according to the theoretical definition of the derivative.

For a function u(x), the derivative at point x is defined by

ou . ulx + Ax) — u(x)
=—=lim ———

Uy = — =
0x  Ax—0 Ax

“4.1.1)

If we remove the limit in the above equation, we obtain a finite difference, which
explains the name given to this method.

If Ax is small but finite, the expression on the right-hand side is an approximation
to the exact value of u,. The approximation will be improved by reducing Ax, but
for any finite value of Ax, an error is introduced, the truncation error, which goes to
zero for Ax tending to zero.

The power of Ax with which this error tends to zero is called the order of accuracy of
the difference approximation, and can be obtained from a Taylor series development
of u(x + Ax) around point x.

Actually, the whole concept of finite difference approximations is based on the
properties of Taylor expansions. Developing u(x 4+ Ax) around u(x) we have

o Ax2u AP Pu

This relation can be written as follows:
u(x + Ax) — u(x) Ax Ax?
T = ux(x) + 7”xx(x) + T”xxx(x) + - (4.1.3)

Truncation error
showing that
e The right-hand side (r.h.s) of equation (4.1.1) is indeed an approximation to the

first derivative u, in point x.
e The remaining terms in the r.h.s represent the error associated to this formula.
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Figure 4.1.1 Taylor expansion of the function u(x), around point x.

If we restrict the truncation error to its dominant term, that is to the lower power
in Ax, we see that this approximation for u(x) goes to zero like the first power of Ax
and is said to be first order in Ax and we write

uls + Ax) —u(x) e (x) + ﬁuﬂ(x) = 1, (x) + O(Ax) (4.1.4)
Ax 2

indicating that the truncation error O(Ax) goes to zero like the first power in Ax.

A very large number of finite difference approximations can be obtained for the
derivatives of functions as shown next and a general procedure will be described in
Section 4.4, based on formal difference operators and their manipulation.

A remark about the significance of Taylor expansions

The Taylor expansion (4.1.2) actually tells us something quite remarkable about the
properties of continuous functions. The left-hand side (1.h.s) is the value of the func-
tion u at an arbitrary distance Ax from point x, with no restriction on this distance.
In the right-hand side (r.h.s), all quantities are evaluated at point x. Hence, what the
Taylor expansion tells us is that we can know the value of the function at an arbitrary
distance far away from point x (say 5000 km), if we know ‘everything’, that is all the
derivatives, at this single point x (Figure 4.1.1). In practice, for any finite value of
Ax, the knowledge of a finite number of derivatives in point x, will suffice to evaluate
the value of u at point (x + Ax) with a preset accuracy.

Example E.4.1.1
This is illustrated by the following plot of the Taylor expansion of (eV™ — 1) around
x =0, obtained by the Maple symbolic mathematical software (version Maple 10):

1 1 1 1 1 1
) = o 1Tap 2 5/2 3 72
(e ) ﬁ+2x+6x 5 T oY T 505 T 50a0”

14 1 9/2 5
0 E4.1.1
*20320" 3608807 O ( )

Figure E.4.1.1 illustrates that by increasing the number of terms of the Taylor expan-
sion, we increase the distance over which the expansion provides a valid representation
of the function. With four terms, that is the knowledge of up to four derivatives in
point x = 0, the four term expansion covers nearly all the domain from 0 to 2.
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Figure E.4.1.1 Taylor expansion of (eﬁ — 1) up to order 5.
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Figure 4.1.2  One-dimensional uniform grid on the x-axis.

4.1.1 Difference Formulas for First and Second Derivatives

To apply this general definition, we consider a one-dimensional space, the x-axis,
where a space discretization has been performed such that the continuum is replaced
by N discrete mesh points x;, i=1,...,N (Figure 4.1.2).

We will indicate by u; the value of the function u(x) at the points x;, i.e. u; = u(x;)
and consider that the spacing between the discrete points is constant and equal to Ax.
Without loss of generality, we can consider that x; =i Ax and this point will also be
referred to as ‘point x;’ or as ‘point i’.
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41141

Difference formula for first derivatives

Applying the above relations (4.1.3) and (4.1.4) at point i, we obtain the following
finite difference approximation for the first derivative (uy); = (du/0x);:

ou Uil —u;  Ax Ax?
(ux)i = (ax)l = I+Ax l _T(L‘xx)i - 6 (uxxx)i + - (415)
Truncation error
Ui+l — Ui
= ——— 4+ 0(A
Ay 1O

As this formula involves the point (i + 1) to the right of point i, it is called the first
order forward difference for the first derivative (u); = (du/0x);.

This is certainly not the only formula we can think of, as we can re-apply the rela-
tions (4.1.1)—(4.1.4) by replacing everywhere Ax by (— Ax). This leads to the relation:

ou U —ui—1  Ax Ax?
(ux)i = <3x>l = # +7(Uxx)i - T(uxxx)i + - (4.1.6)
Truncation error
Ui — Uj—1
= —— 4+ 0(A
A, T O(AY)

With respect to the point x =x;, this formula is the first order backward differ-
ence for the derivative (uy);. Both formulas (4.1.5) and (4.1.6) are called one-sided
difference formulas, since they involve points at one side of point i only.

Looking carefully at the two one-sided formulas, we observe that the dominant first
order truncation errors are of opposite signs. Hence, if we add them up, we obtain a
second order approximation

2
(ux)i = % - ATx(uxxx)i +--= % + O(sz) (4.1.7)

This formula, which involves the points to the left and to the right of point i, is
called therefore a central difference formula.

These three approximations are represented geometrically on Figure 4.1.3 while the
derivative is represented by the tangent to the curve u(x), the forward, backward and
central chords represent the approximations defined by the corresponding difference
formulas. It is clear that the central chord is always a much better approximation than
the one-sided chords and this is reflected by its second order accuracy.

The formula (4.1.7) is indeed particularly interesting, as it provides, on the same
support as the one-sided differences, namely points (i + 1), i, (i — 1), a second order
accuracy, compared to first order. To better realize what this means, consider a domain
between 0 and 1 on the x-axis, with 11 mesh points and Ax = 0.1. A first order formula
can be interpreted as generating an error O(Ax), that is of the order of 10%, while
applying the second order central formula on the same 11-grid point mesh, will give an
accuracy O(Ax?) of the order of 1%. If we want an accuracy of 1% with the one-sided
difference formulas, we will need to generate a mesh with 101 points and Ax =0.01,
which represents a significantly higher cost, as we need to apply the formulas 100
times instead of 10 times.
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Figure 4.1.3  Geometrical interpretation of difference formulas for first order
derivatives.

Important remarks and interpretations

e As the truncation error of a first order FD formula is proportional to the second
derivative, as seen from the above equations, we can state that a first order FD
formula is exact for a linear function. Similarly, a second order formula has its
truncation error proportional to the third derivative; hence, this formula will be
exact for a quadratic (parabolic) function.

o The first order forward difference formula for (u,); can be considered as a central
difference with respect to the mid-point

(i + Xiy1)

5 (4.1.8)

Xig1/2 =
leading to a second order approximation for the derivative (uy);+1,2 in this point.
This is an important property, which is often used in computations due to its com-
pact character. The same formula (4.1.5) is either a first order forward difference
for (uy); or a second order central approximation for (uy); 11,2 but involving only
the same two mesh points 7 and (i 4+ 1). We therefore have

ou Uit — Uj
()i = | — =T L oAax?) (4.1.9)
/i1 Ax
and similarly at (i — 1/2)
ou Ui — Uj—1 5
(ux)i-12 = . = ——— + O(Ax") (4.1.10)
x /)12 Ax

Compared to the formulas (4.1.5) and (4.1.6) for (u,);, we have gained an order
of accuracy by considering the same expressions as approximations for the mid-
points (i + 1/2) or (i — 1/2), respectively.
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Actually, difference formulas for the first derivative (i, ); can be constructed involv-
ing any number of adjacent points with the order of the approximation increasing with
the number of points. In any numerical scheme, a balance will have to be defined
between the order of accuracy and the number of points simultaneously involved
in the computation. The bandwidth of the algebraic system that has finally to be
solved in order to obtain the solutions u; is generally proportional to the number of
simultaneous points involved.

Second order one-sided differences

For instance, a one-sided, second order difference formula for (u);, containing only
the upstream points, i — 2, i — 1, i, can be obtained by an expression of the form
au; + bu;_1 + cu;_2

(ur)i = ~ + 0(Ax?) (4.1.11)

The coefficients (a, b, ¢) are found from a Taylor expansion of #;_» and #;_1 around

u;. Writing
(2Ax)? (2Ax)?
wi—p = uj — 2Ax(uy); + T(uxx)i - 6 ()i + -+ (4.1.12)
Ax? Ax3
ui— = u;j — Ax(uy); + T(uxx)[ - T(uxxx)i +--- (4.1.13)

and multiplying the first equation by ¢, the second by b and adding to au;, leads to
auj + bu;_1 4+ cui—r = (a+ b+ c)u; — Ax(b + 2¢)(uy);

Ax? 3
+—= (b + 40)(ux)i + O(AXY) (4.1.14)

Hence, identifying with equation (4.1.11), we obtain the three conditions

a+b+c=0
(b+2c) = -1 (4.1.15)
b+4c=0

and the second order accurate one-sided formula:

ui — Aui—1 + ui—p
2Ax

3
()i = + O(Ax?) (4.1.16)
This is a general procedure for obtaining finite difference formulas with an arbitrary
number of points and an adapted order of accuracy. In general, a first order derivative
at mesh point i, can be made of order of accuracy p, by an explicit formula such as
(4.1.11) involving (p + 1) points. For instance, a formula involving the forward points
i+2,i+1,i,is
=3u; +4uip1 — Ui
2Ax

()i = +0(Ax?) (4.1.17)
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The first of the three equations (4.1.15) is of great importance, since it states that
the sum of the coefficients of a finite difference formula, in this case (4.1.11), has to
be zero.

This is a general condition of consistency, ensuring that the numerical approxima-
tion to the derivative of a constant will always vanish, as can be seen by replacing all
the u; by the constant value of one.

Therefore, any difference formula, for any order of the derivative and in any num-
ber of dimensions, must always satisfy the condition that the sum of its coefficients
is equal to zero.

Higher orders of accuracy can also be obtained with a reduced number of mesh
points at the cost of introducing implicit formulas, as will be seen in Section A4.5.

4.1.1.2 FD formulas for second derivatives

Finite difference approximations of higher order derivatives can be obtained by
repeated applications of first order formula. For instance, a second order approxi-
mation to the second derivative (uyy); is obtained by

82 2 — Wx)i
(tx)i = (a;zl)l = % (4.1.18)

Uiyl — 2u; +uiq )
= ——— + O(Ax
A2 (Ax7)
where backward approximations for (uy);+1 and (u); are selected.
This symmetrical, central difference formula is of second order accuracy as can be
seen from a Taylor expansion. We obtain indeed

i1 = 2+ iy Ax? (34“) b (4.1.19)
i

ae ity (e

As with equation (4.1.11) we can define formulas with an arbitrary number of
points, around point i, by combination of Taylor series developments. For instance,
an expression such as equation (4.1.11) for the second derivative (uy,); will lead to
the conditions

a+b+c=0
b+2c=0 (4.1.20)
b+4c=2

and to the one-sided, backward formula for the second derivative

uj — 2u—1 + i

sz + Ax(uxxx)i + .. (4121)

(txx)i =

This one-sided formula is only first order accurate at point i. Note also that this
same formula is a second order accurate approximation to the second derivative at
point (i — 1), as can be seen by a comparison with the central formula (4.1.18).
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The above procedure, with undetermined coefficients, can be put into a systematic
framework in order to obtain finite difference approximations for any derivatives,
with a pre-selected order of accuracy. In order to achieve this a formalization of the
relations between differentials and difference approximations is to be defined, via
the introduction of appropriate difference operators. The methodology behind this
approach is developed in Section A4.4.

4.1.2 Difference Schemes for One-Dimensional Model Equations

We are now ready to derive the first numerical finite difference schemes, by applying
different FD formulas to some of the model equations introduced in Section 3.1.

4.1.2.1 Linear one-dimensional convection equation

Let us consider first the fundamental linear one-dimensional convective, hyperbolic
equation (3.1.6), written here in the following notation:

o a 4122
ot T T (4-1.22)
where u(x, ¢) is the unknown function of (x, 7) and a the convection speed, or the wave
speed according to the interpretation given to equation (3.1.6).
In the following, when no danger of ambiguity can arise, we will also use a short-
hand notation, where the derivatives are indicated as subscripts. Hence, we will write
equation (4.1.22) as follows:

u+auy =0 (4.1.23)

Considering an initial, boundary value problem, this equation has to be substanti-
ated by the following initial and boundary conditions, for a > 0:

Atr=0 u(x,00=uOx) 0<x<L (4.1.24)
Atx =0 u(0,7) = g(?) t>0

In order to apply a finite difference method to this equation, we discretize the space
and the time domains, with constant steps. That is, the x-axis is discretized with N
constant mesh intervals Ax, and the time axis is subdivided in constant time intervals
At, as in Figure 4.1.4, with

X; = iAX " = nAt
ul! = u(iAx,nAt) (4.125)
We indicate the time level n by a superscript and the space position is indicated by
the subscript i.

In order to obtain a numerical scheme, we have to discretize separately the space and
the time derivatives and let us concentrate first on the space discretization. We could
select for instance, a central, second order difference formula for the discretization
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Figure 4.1.4 Discretization of the time and the space axis.

of the space derivative at mesh point i. This leads to the semi-discrete scheme, also
called method of lines:

a
(up)i = oA, it ui—1) (4.1.26)

The left-hand side represents the time derivatives evaluated at point i, and the next
step is to define a discretization in time. This implies the replacement of the time
derivative by a discrete form but also a decision as to the time level at which the
right-hand side will be evaluated.

In a convection (or propagation) problem, we know the solution at # =0 and we
look for the solution at later times. This is translated numerically, when we progress in
time from time level n to time level (n + 1), by considering that we know the solution
at time level » and are looking for its evolution to time level (n 4 1). It is therefore
logical to select a forward difference formula for (u,);, leading to

u

a
T’ = _E(UHI — uj—1) (4.1.27)

n+1
I/ti —

The simplest scheme would be obtained with an evaluation of the right-hand side of
equation (4.1.27) at time step n, for which all quantities are considered as known. This
method is known as the Euler method for the time integration of ordinary differential
equations, leading to the explicit numerical scheme:

Wy

a
L Sl — ) = 0 (4.1.28)
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This is an explicit scheme, since the discretized equation contains only one unknown
at level (n+ 1). It will be programmed by isolating the unknown value, as

=l = Sy ) (4.1.29)
This form shows that the unknown value at the time (# 4 1) is obtained by a few arith-
metic operations on known quantities. This is typical of explicit schemes, which
are very economical in terms of number of arithmetic operations necessary for
progressing in time.

As we will see in the following chapters (chapter 7) the price to pay is a severe
restriction on the time step A¢, as a consequence of stability conditions, which requires
many short time steps to advance in time.

Evaluating the right-hand side at level (n + 1), leads to the implicit scheme:

n+1 n
A S gt =0 (4.1.30)
known as the backward or implicit Euler method, since three unknowns appear
simultaneously at time level (n 4+ 1).

Equation (4.1.30) leads to a system of equations with a tridiagonal matrix and we
will present in an appendix to Chapter 10, algorithm leading to an efficient solution
of tridiagonal systems, known as the Thomas algorithm.

Note that this equation could also be obtained from equation (4.1.26) by applying
a backward difference in time for the discretization of u;.

From the definitions of the order of accuracy of the finite difference formulas, we
expect schemes (4.1.28) and (4.1.30) to be first order in time and second order in
space at points i and time level n.

First order in time, first order in space

Another alternative, with a first order approximation for the space derivative, would
be obtained with a backward difference in space, leading to the semi-discrete form:

(ur)i = _Aix(ui —uj1) (4.1.31)

With a forward difference in time, we obtain the following explicit scheme:

utth a

The corresponding implicit version, evaluating the right-hand side at (n 4- 1), would be

Wt a
'Tl + A—x(u;’“ —uth=0 (4.1.33)

We could also choose to apply a forward difference in space instead, leading to

a

(ur)i = Ax

(uiy1 — u;) (4.1.34)
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and with the same two choices for explicit and implicit schemes

n+l _ n

u. a
i o LA Ax(u;l+l —u")=0 (4.1.35)
Wy a
+1 1
i = LIS fx(u?“ _ulf'+ )=0 (4.1.36)

These schemes are first order in space and in time and are known as the first order
upwind schemes for the convection equation.

The richness in the world of numerical schemes is unlimited, as we can select
any combination of discretization formulas for the space and the time differences
separately. Hence, we can write an unlimited number of possible schemes, even for the
simplest model equation, such as the 1D linear convection equation. These schemes
will have different properties, in terms of accuracy, stability and error properties and
the analysis and prediction of these properties will form the subject of Part III.

To further illustrate this variety in possible schemes, let us look at some additional
options.

First order in time, second order backward difference in space

u'? 3u,- — 4ui71 +ui—p

i =0 4137
N 2Ax (4.1.37)

n+1
Lli -

with the explicit

1
wt —uf + P e S /= (4.1.38)
At 2Ax h
or implicit options
W 3t ] palt)
.. —o (4.1.39)

At 2Ax

Second order in time, second order central difference in space

n+1 n—1 n n
up U Uip) — Ui
=0 4.1.40
ar YT Ax (4.140)

This explicit scheme is called the leapfrog scheme and is second order in space and
time. Its properties will also be discussed in Part III.

RECOMMENDATION FOR PRACTICAL TESTS

You can observe that the different schemes above differ by what we could consider
as ‘small’ changes in the location of some points or in values of coefficients.
However, their properties can differ significantly and we can already recommend
that you program some of these schemes, even before studying the next chapters,
where methods for predicting their properties will be presented.
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We suggest that you program first the explicit central scheme (4.1.29), with
the non-dimensional parameter 0 =aAt/Ax equal to 0.8. Consider the initial
solution of triangular shape

u(°>(x)=0 x<0.9
=10(x — 0.9) 09<x<1.0
=10(1.1 —x) 10<x<1.1
=0 x>1.1

and calculate five consecutive time steps. Compare with the exact solution
u(x, ) =u® (x — at), with a=1, Ax=0.05 and 41 mesh points over the initial
domain between x =0 and x =2.

You will observe that the numerical solution grows erratically, showing that this
scheme is unstable, and therefore useless.

Write now a program for the same initial solution, but applying the first order
upwind scheme (4.1.32), with the parameter o = aAt/Ax equal to 0.8 and calcu-
late 5, 10, 15 and 30 time steps. When you compare now the graphical results with
the exact solutions, you will observe that the numerical solution is acceptable, but
that it is significantly diffused with increasing number of time steps.

Repeat now the same calculation with the parameter o = aAt/Ax equal to 1.5
and observe that the solution is again erratic. This is typical for what we will define
as conditional stability.

Here is what you should obtain, where the full line is the exact solution after,
respectively 5 and 30 time steps (Figure 4.1.5).

59 Unstable explicit central scheme
CFL =0.8

U exact

—— U calculated 5

U(i) after five time steps

Figure 4.1.5a  Explicit central scheme for triangular initial profile and o = 0.8,
after 5 time steps.
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1.2 4 Linear convection of a triangular profile
FOU — CFL = 0.8

—— Uiterat 5
—a— (Jiterat 10

—a— U iterat 15
U exact 30
Uiterat 30

0.8 A

i

OROK K KK KK KK K OROK KK K K 3K KK K KK KK X KK
1 6 11

(b)

Figure 4.1.5b First order upwind scheme for triangular initial profile and
o =0.8, after 5, 10, 15 and 30 time steps.

4.1.2.2 Linear diffusion equation

We consider now the time-dependent diffusion equation (3.1.10), describing a damped
diffusion in time

ou 92u

g 4.1.41

o a2 (4.141)
which we write also in condensed notation as

Up = Olllyy (4.1.42)

The physics of diffusion is of isotropic nature and therefore the FD formula which
correspond best to this property is a central difference, which does not distinguish
between upstream and downstream directions. Hence, we select the second order
central difference (4.1.18) for the space derivative and a forward difference in time,
leading to

aAt
Ut =l + e (uig1 — 2ui + ui—1) (4.1.43)

Here again we can choose an explicit scheme

aAt
u?"'] =ul + A—xz(uH_] —2u; +ui—1)" (4.1.44)
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y
4 i—1 i i+
(i+1,j+1)
j+1
) (0, J) .
y;=JjAy j
c =1
Ay
A A
| | > X
Ax X; = iAx
Figure 4.2.1 Two-dimensional Cartesian mesh.
or an implicit scheme
alt
ut = 4 o Wit = 2ui + ui_p)"H (4.1.45)

Both schemes are first order in time and second order in space.

A well-known scheme for this parabolic time-dependent diffusion equation is
obtained by taking the average of the explicit and implicit schemes, leading to the
scheme known as the Crank—Nicholson scheme

1 aAt 1 aAt
+1 +1 +l +1
u? ul+ 2A2( o —2u) u’ )+2A2(u’+1 =2ul+ul ) (4.1.46)

This scheme is second order in time and in space.

4.2 MULTIDIMENSIONAL FINITE DIFFERENCE FORMULAS

It is easy to extend the one-dimensional FD formulas to the partial derivatives in two-
or three-dimensional space, by applying the definition stating that a partial derivative
with respect to x is the variation in the x-direction at constant y.

In a two-dimensional space, a rectangular mesh can be defined by the points of
coordinates x; =xo + iAx and y; =yo +jAy (Figure 4.2.1).

Defining u;; = u(x;, y;), all the above formulas can be applied on either variable
X, y, acting separately on the i and j subscripts, and all derivations are based on a
two-dimensional Taylor expansion of mesh point value around u;;. For instance, for
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point (i + 1,7+ 1)

0 9
u(xi + Ax, i+ Ay) = i1 i1 =uy + | Ax— +Ay— | u
' ox ay

+1 A3+A32
= X— — ) u
2 ox yay

i

;

FRIONLINUNI A b “2.1)
— | Ax— — ) u 2.
6 \ "o Ty

For the first partial derivative in the x-direction a forward difference of first order
accuracy is

i

ou Ujt].j — Ujj
(ux)ij = (;) = L T 4 o(Ax) (422)
. Ax

and similarly in the y-direction
ou Uuj j+1 = u,-j
() = <f> e Bl BN (4.2.3)
Ny )y Ay

Backward partial differences can be defined in a similar way, also with first order
accuracy

au Uii — Ui_ .

(ux)ij = (;) =L 4 o(Ax) (4.2.4)
x /i Ax

(uy)yj = (3—”‘) = WML oAy (42.5)
ay Jij Ay

For central difference formulas, we have

du Uitl,j — Ui—1,j 2
oy = ( ax)l_j L o) (426)
ou Ui jp1 — Ui j—1 5
P — —_ = = O A 4-2'7
(”y)g/ (ay )ij 2Ay + 0(Ay7) ( )

Also, a second order, central difference formula for the second derivative will be,
referring to formula (4.1.18):

(o) = (3214) wip1,j — 2 +ui—1,;  Ax? <84u>
)i =\ 75 ) =
2 Jj;

and similar expressions can be derived for the y-derivatives:

9%u U j+1 — 2uy + w4, j— AY? [ 3*u
()i = (*2) = =/ e —4> (4.2.9)
W” )i Ay 12\ oy* J;

Ax? 12

428
), (4.2.8)
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Besides the straightforward application of the various formulas presented in the pre-
vious section additional forms can be defined by introducing an interaction between
the two space directions for instance through a semi-implicit form on one of the
two space coordinates. A representative example for a first x-derivative is a weighted
average of the central difference formulas on the linesj —1,,7+ 1, as

Qu 1 [, 1 = Ui 1 +4”i+l,j_ui—1,j
ox i 6 Ax Ax

Uitl, j—1 — Ui—1,j—1
Ax

+ ] + O(AX?) (4.2.10)

which is also of second order accuracy.

4.2.1 Difference Schemes for the Laplace Operator

The Laplace equation plays an important role in CFD, as it appears in the Navier—
Stokes equations, as well as in simple models such as heat conduction or potential
flows. Therefore, its discretization is of major importance for many aspects of CFD.

In order to illustrate this point, let us consider the Laplace operator Au = uy, + uyy
in two dimensions.
As the Laplace equation is typical for diffusion phenomena, it has to be discretized
with central differences, in order for the discretization to be consistent with the
Physics it simulates.

This is a crucial element in the selection of an adequate numerical scheme,
among all the possible options.

Application of second order central differencing in both directions leads to the
well-known five-point difference operator

Uipl,j — 2ujj +uio1,j | Wi 1 — 2 + Ui -
Ax? Ay?

Auyj = +0(Ax%, AY?)  (4.2.11)

or for a uniform mesh, Ax = Ay

Uil j + ui—1,j +ui jr1 +uij -1 — duy Ax? <84u ¥

— Ay — (247"
Ax2 iyt 12\ ax4 + a4

) (4.2.12)
i
referring to the truncation errors given by equation (4.1.19).

This is the most widely applied difference scheme, of second order accuracy, for
the Laplace operator.

This formula is illustrated by the computational molecule of Figure 4.2.2. The
concept of the computational molecule is based on representing, in an (i, j) plane,
only the points which contribute to the difference formula, with their coefficients. It
provides a visual, easy to remember, representation of a two-dimensional difference
formula.

Other combinations are possible whereby difference operators on the two space
coordinates are mixed. For instance the following formula, for Ax = Ay, is also
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i

Figure 4.2.2 Computational molecule for the five-point Laplace operator,
equation (4.2.12).

i i i+2

Figure 4.2.3  Five-point molecules for Laplace operator of equation (4.2.13) for
Ax = Ay.

a second order approximation of the Laplacian operator which is represented in
Figure 4.2.3:

Auy = (i1, j1 + i1, j—1 + uim1, 1+ uim, j1 — 4u)

1
4Ax?
+0(Ax%, AY?) (4.2.13)

Its truncation error can be obtained from Taylor expansions of all the points involved
around the point (i, j), leading to (see Problem P.4.5) where we represent the difference
operator of equation (4.2.13) by A(z)uij.

Ax? 8%u
12 ox*

Ay2 a*u

A®y — A -
ujj ujj + 12 37

<Ax2 + Ay2> ¥
i 4 ax29y?

(4.2.14)

i i

This other five-point scheme is interesting, as it is a rotated version of the scheme
(4.2.12), but actually, it is associated with a major problem. This can be seen by
looking at the link between the schemes of two neighboring points, for instance the
scheme written for point (i + 1, j). By shifting the molecule horizontally by Ax,
represented by open symbols in Figure 4.2.3, we see that the molecules of the points
(i, j) and (i + 1, ) have not a single common point. This is also the case for all the
molecules shifted by one cell in either x- or y-direction. If i, j are even numbers, all
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b a b
/

a -4 a

b a b

Figure 4.2.4  Nine-point molecule for the Laplace operator (4.2.15) witha+b= 1.

these shifted points will have either i or j uneven. Hence, this total decoupling of the
computational molecules is called an odd—even decoupling, leading to solutions on
even points which will have different error levels than the solutions on the uneven
points.

Therefore, this scheme is not recommended.

We can define a family of nine-point schemes for the Laplace operator on a uniform
cartesian mesh Ax = Ay, by the combination

APuy = (@AY + APy with a+b=1 (4.2.15)

where we designate the standard five-point scheme of equation (4.2.12) by A(l)uij.
Combining these two operators, we obtain (see also Problem P.4.6)

APuy = Auy +

AX2 % d*u *u
(4.2.16)
i

12 | ox4 + oyt +6b 0x29y?
The computational molecule associated to this scheme is shown in Figure 4.2.4

The particular choice of a=5b=1/2 leads to the well-known scheme of Fig-
ure 4.2.5a, which is also obtained from a Galerkin finite element discretization of
the Laplace operator on the same mesh, using bilinear quadrilateral elements, as
shown in Chapter 5.

With b= 1/3, we obtain the computational molecule of Figure 4.2.5b, which is
recommended by Dahlquist and Bjorck (1974), because the truncation error is equal to

N A N
=+ — ) u=—"A%
12 \ax2 32 12
Hence, the equation Au=Xiu can be discretized with this nine-point operator
A® = (%A(l) + %A(z)) and will have a truncation error equal to — )‘zlAzxz u

Therefore, the corrected difference scheme

A2 Ax2
3
Ay = <A+ 12 )u

will have a fourth order truncation error.
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(a) (b)

Figure 4.2.5 Nine-point molecule for the Laplace operator (4.2.15) for b=1/2
and b= 1/3. All coefficients are multiplied by (a) 1/2 and (b) 1/3.

Example E.4.2.1: A program for solving the Laplace equation

The schemes for the Laplace equation allow us now to write a simple program for the
Poisson equation:

Au=f (E.4.2.1)

on a Cartesian grid. If we select the five-point scheme (4.2.11), we can discretize the
Poisson equation as

Uil,j = 2+ Uim1,j Uil = 25 U

s N =f; (E4.2.2)
or for Ax= Ay
Uivl,j tUi—1,j T Ui j+1 + Ui j—1 — 4uij =f,'ij2 (E4.2.3)

We can now write a five-line FORTRAN program to solve this numerical scheme by
an iterative method:

do N=1, NTmax
do 1i=1,Imax
do j=1,Jdmax
u(i,j)=0.25*(u(i+1,j)+u(i-1,j)+u(i,j+1)+
u(i,j-1)-£(1,]) *Ax**2)
continue

where NTmax is the maximum number of iterations, Imax and Jmax being the number
of points in the x- and y-directions, respectively.

The iterative method behind this algorithm is the Gauss—Seidel method, to be
introduced in Part IV, Chapter 10.

Of course, in a practical code for the Poisson equation, we will have to add instruc-
tions for the treatment of the boundary conditions, as well as appropriate routines for
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reading in the geometrical data and post-processing the results. These additions can
require many thousands of lines, depending on the level of generality of the Poisson
solver.

But the point we want to make here is that, once the theoretical developments are
done, and this can take many pages of theory, ultimately the code implementing the
selected numerical scheme can be very short and simple.

We expect that you will have the opportunity to verify this in the following when
programming some of the proposed schemes in the later chapters.

Nonlinear diffusion terms

In the Navier—Stokes equations, the diffusion terms have a more general form com-
pared to the Laplace equation when the diffusion coefficients are not constant. They
appear under the form of the operator %(K%u) as shown in Chapter 1. A second order
discretization of this operator can be written as follows, introducing the values at
mid-points (i % 1/2,j) and (i, j £ 1/2):

5 o 1
V(«Vu); = R(KiJrl/Z,j(“Hl,j —uj ;) — ki—12, j (i, j — ui-1,}))
1
+ Tyz(Ki,jH/z(ui,jH —ui ;) — ki —172(u;, j — uij —1))(4.2.17)
It is seen that for constant diffusion coefficient k, we recover the five-point scheme
(4.2.11) for Laplace equation.

4.2.2 Mixed Derivatives

Mixed derivatives of any order can be discretized in much the same way by using for
d/0x and 9/ dy the various formulas and their possible combinations described above.

The simplest, second order central formula for the mixed derivative is obtained
from applying central differences in both directions x and y:

0 (i j41 — Ui j—1 2
N iV U Vil ST 0 TN
(”xy)tj o ( 2Ay + O(Ay)
1
= m(“iﬂ,fﬂ — i1, 41 — ig1, jo1 + uim1, j—1) + O(Ax?, Ay?)

(4.2.18)

which is illustrated by the molecule of Figure 4.2.6.
Other combinations are possible, for instance by combining a central difference in
the x-direction and a first order forward difference in the y-direction:

(txy)ij = (Uit1, 1 — Uit j+1 — Uip1, j + Ui, ;) + O(Ax?, Ay)(4.2.19)

2AxAy

which is first order in Ay and second order in Ax. This formula is represented in
Figure 4.2.7.
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]
j *(1/4)
*1
i

Figure 4.2.6 Computational molecule for the second order accurate, mixed

derivative formula (4.2.18).
-1 1
R
029
i
1 —1

i

Figure 4.2.7 Mixed derivative formula (4.2.19). All coefficients to be multiplied
by 1/2.

Similar formulas can be obtained by applying a backward difference in y, instead,
or by changing the roles of x and y, leading to a formula which is second order in Ay
and first order in Ax (see Problem P.4.8).

As mentioned previously a same formula can be of higher order if considered as an
approximation of the derivative at an appropriate mid-point. The difference formula
of equation (4.2.19) is indeed a second order approximation to (iyy);, j+1/2, Which is
centrally located, within the four involved mesh point.

This can be seen by applying a Taylor expansion of all the mesh point values of
this equation around u; ;1 1,2. For instance, for the points (i &= 1,/ + 1), we have

9 Ay
Uil j+1 = Ui, j+1/2 + iAxa + 2w Ui, j+1/2

d

A 2
L (TN + O(AX, AY?)
= X— 4+ —— | u; X
7 o T2 gy ) Ay

A 1
= uj, j+1/2 £ Ax(ux)i, j+1/2 + Ty(“y)i,j-kl/z + Esz(“xx)i,j+l/2

AxAy
2

1
+ g A Wi 12+ ()i, 14172 + O(AXS, Ay®) (4.2.20)
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j+1/2, j+1/2

Figure 4.2.8 Mixed derivative formulas (4.2.23) and (4.2.24).
Similarly for the points (i + 1, /), we have

d Ay o
Uitl,j = Ui j+1/2 + iAxa—x—75 i it1)2
: 9 _dyay 3 A3
SlEAx————) w; O(AX3, A
vy (2arg = G5) wnnroaet a)

A 1
= U, j+1/2 T Ax(ux)i, j+1/2 — Ty(”y)i,jJrl/Z + Esz(”xx)i,j+l/2
1 AxAy
+ g A )i 12 F = ()i 12 + O(AY, AyY) - (4221)

By forming the differences of equation (4.2.19), we obtain

2 A2
——(iy1, 1 — uio1, jr1 — Ui, +Huio1 ) + O(AXS, Ay©)

()i, j+1/2 =
2AxAy 4.2.22)

demonstrating the second order accuracy of this formula.
A first order formula in both x and y is obtained from first order forward differences
in both directions, leading to

(uxy)ij = (ig1, j+1 — Ui, j+1 — Uir1,j + i ;) + O(Ax, Ay) (4.2.23)

AxAy
Observe that the same formula (4.2.23) will give a second order accurate estimation
of the mixed derivative taken at the point (i 4 1/2, j + 1/2) (see Problem P.4.9) that is

1
(ty)it1/2, 4172 = ~———(Uit1, 41 — Ui 11 — Uig1, j + i, ;) + O(AX?, Ay?)
AxAy (4.2.24)

These formulas are represented on Figure 4.2.8.
Applying backward differences in both directions, leads to

(txy)ij = izt j—1 — Ui j—1 — ui—1,; + ui, j) + O(Ax, Ay) (4.2.25)

AxAy
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*—0
1t

(a) (b)

Figure 4.2.9 Second order mixed derivative approximations (a) equation (4.2.26)
and (b) equation (4.2.27).

Since the truncation errors of equations (4.2.25) and (4.2.23) are equal but of opposite
signs (see Problem P4.10) the sum of the two expressions will lead to a second order
accurate formula for the mixed derivative:

(txy)ij = (Uig1, j1 = i, j1 = Uit j + U1, 1 = Ui 1 = Ui—1,

2AxAy
+2u;;) + O(AX?, Ay?) (4.2.26)

This formula is represented in Figure 4.2.9a and, compared to the central approxi-
mation (4.2.18) shown in Figure 4.2.6, has a non-zero coefficient for u;;. This might
be advantageous in certain cases by enhancing the weight of the u;; coefficients in
the matrix equations obtained after discretization, that is enhancing the diagonal
dominance, see for instance O’Carroll (1976).

An alternative to the last formulation is obtained by a different combination of
forward and backward differences, leading to the second order approximation for
(txy)ij» shown in Figure 4.2.9b:

(txy)ij = (Wi, j — Wi, j—1 + Ui o1+ o1 — W1 el T U

2AxAy
—2u; ;) + O(AX?, Ay?) (4.2.27)

It can also be seen, by adding up the two last expressions, that we recover the fully
central second order approximation (4.2.18). Many other formulas can be found in
the literature, for instance in Mitchell and Griffiths (1980).

4.3 FINITE DIFFERENCE FORMULAS ON NON-UNIFORM GRIDS

Up to now, we have introduced finite difference formula on uniform grids where
the distance between adjacent mesh points is constant over the whole grid. In prac-
tice however, this will seldom be the case, as more often the grid has to adapt to
the geometrical boundaries or to the flow physics, making uniform grids unpractical.
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’ /o |-

Xj Xi +1

Figure 4.3.1 Representative grid in a boundary layer region above a solid wall.
The velocity profile is superposed on the grid, which is selected to be uniform in the
x-direction and non-uniform in the y-direction.

We refer you to the grid examples shown in the general introduction to this book,
where you can observe a selected cross-section of realistic grids.

A very representative example is provided by the grids in boundary layer regions
around solid surfaces (see Figure 4.3.1). In a laminar boundary layer, it is known from
Prandtl’s analysis that the boundary layer thickness § over a flat plate scales with x
like the inverse of the square root of the Reynolds number. We refer you to your basic
course of Fluid Mechanics for the background behind the boundary layer properties.

That is

VX X Ugox
S~ [— = with Rey = ——

Uso +Rey v

where v is the kinematic viscosity (in m?/s) and Us is the velocity outside the bound-
ary layer. It is also known that the ratio of the velocity gradients in the normal and
streamwise directions is of the order of the square root of this same Reynolds number:

ou [ou
— [/ — ~+vRey
ay [ ox

After having generated a grid, if we wish to ensure that the velocity variations in
the x- and y-directions are of the same order over the mesh distances Ax and Ay,
respectively, we should generate a grid with an aspect ratio Ax/Ay of the order of

Ay 1
Ax  /Rey

For a realistic Reynolds number of say, 1 million, this ratio is of the order of 1000!
Hence, we would need to generate cells where Ay is thousand times smaller than
Ax. Inpractical terms, for a plate of unit length and 101 mesh points in the x-direction,
that is Ax=0.01, Ay should be of the order of 10~>!
This simple analysis shows that a uniform mesh would require unrealistic small cell
sizes, to be equal to the smallest cell size of 107>, leading to millions of mesh points.
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Figure 4.3.2  Arbitrary mesh point distribution in one-dimensional space x.

Another lesson of this analysis is that we should not generate uniform grids in the
y-direction, but have Ay increase progressively when moving away from the wall as
the intensity of the gradients progressively reduces to values of the same order as in
the x-direction, as shown in Figure 4.3.1.

An approach often used in practice is to define a clustering factor r, such that

yie1 =yir/ 43.1)

This creates mesh cells growing progressively in the y-direction as shown in
Figure 4.3.1. Typical values of the clustering factor are » ~ 1.1-1.5.

Due to the strong gradients in the normal directions, it is essential for reasons of
accuracy to position at least 1020 points in the boundary layer regions.

The derivation of accurate difference formulas for non-uniform grids is therefore
very important in CFD, since this is the situation most often found in practice. Hence,
great care should be given to the choice of appropriate discretization formulas on
these grids.

It is very essential that you give a serious attention to the related problem of loss
of accuracy on non-uniform grids, if either you write your own code, or if you use
existing, commercial or other, CFD codes to study practical fluid problems, when
you evaluate the results of the simulations.

We will go along the following steps:

e Firstly, derive formulas valid on non-uniform grids.

e Secondly, evaluate the loss of accuracy related to the FD formula on non-uniform
grids.

e Thirdly, and more importantly, provide guidelines on the grid properties and on
grid quality in order to minimize the errors related to the non-uniform grids.

For one-dimensional non-uniform grids, we can define different types of configu-
rations, depending on the way we position the mid-point values and the points where
the function values are evaluated.

Figure 4.3.2 represents a mesh arrangement, where the points (i £ 1/2) are the
mid-points of the intervals (i,i £ 1) and is defined as a cell vertex configuration in
the finite volume context. If we consider the cell (i — 1/2,i+ 1/2) mesh point i is
not at its center due to the grid non-uniformity. An alternative option, known as cell
centered, is shown in Figure 4.3.3.

In order to derive FD formula for non-uniform mesh sizes in a one-dimensional
space defined by the grid of Figure 4.3.2, we refer again to the Taylor series expansions,
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written for the mesh points (i £ 1), (i £2):

2 3

Ax; Ax;
ui—1 = uj — Ax;(uy); + T(uxx)i - T(uxxx)i + -
Ax,y A}y
Uiyl = Ui + AxH»l(ux)i + ) (uxx)i + 6 (uxxx)i + -
(Ax; + Ax;_1)?
uji— = uj — (Ax; + Axj—1)(ux);i + %(uxx)i
(Ax; 4+ Axi_p)?
— %(uxxx)[ 4+

(Axir1 + Axipo)?

uip2 = u; + (Axiy1 + Axip2)(ur)i + 5 (ttxx)i
Axit1 + Axig)?
%(uﬂx% 4o (4.3.2)
where the notation
Axl- =X;i — Xi—1 (433)

is introduced.

In presence of a non-uniform grid, many options are open for difference formulas,
generalizing the formulas derived in Section 4.3.1 for uniform grids.

The examples derived in the following sections are representative of the additional
variety that arises when the grid has non-constant cell sizes.

4.3.1 Difference Formulas for First Derivatives

A one-sided, first order, formulas for the first derivative can be defined as follows:
Forward difference

Uikl — Ui Axiy

(y)i = Axiti 3 (txx)i 4.3.4)
Backward difference
U — Uj—| Ax;
(ux)i = ﬁ + T’uxx (4.3.5)

Central differences

If we take the simple average of the two formulas above, which is often done in finite
difference computer programs, as well as in finite volume or finite element methods,
we obtain a form of central difference,

Uiyl — Ui U — U] Axiy] — Ax;
: + : ) ] - (txx)i

1
()i = 5[ Axit Ax; 4
Axiz + Ax2

12 ad (txxx )i (4.3.6)
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This formula reduces to equation (4.1.7) on a uniform grid, but the important obser-
vation is the appearance of the third term, which is of first order if the difference in
adjacent cell sizes (Ax;4+1 — Ax;) remains finite. If the mesh size varies abruptly, for
instance if Ax;41 ~ 2Ax; the above formula will be only first order accurate.

This is a general property of finite difference approximations on non-uniform
meshes. If the mesh size does not vary smoothly, a loss of accuracy is unavoidable.

We will come back to this very important point at the end of this section.

A more elaborate formula can be defined, by combining formulas (4.3.4) and (4.3.5)
in order to eliminate the first order truncation error, referring to the Taylor expansions
of equation (4.3.2). This leads to the following formula (see also Problems P.4.10 and

P4.13):
1 Ax; AXxiy ]
Uy)i = U1 — u;) + Uj — Uj—
( X)l Axi+l T Ax; [Axi+1( i+1 1) Ax; ( i i 1)
Ax;Axiyy
— = () (43.7)

which is second order for any grid size distribution. The price to pay for this property
is a formula which is more complicated as it is formed by a weighted average of the
one-sided formulas, based on the sizes of the adjacent cells.

It has to be mentioned here that these weighted averages are very difficult to gener-
alize in two or three dimensions, while the simple average of formula (4.3.6) remains
straightforward in multidimensional structured or unstructured grids. For practical
applications, we have to restrict ourselves to simple expressions, easily extendable to
arbitrary dimensions.

This explains why this simple average is most widely applied, with the risk of
reduction of the order of accuracy. Therefore, guidelines in order to minimize the
unfavorable effect of this approach are required and will be given in the following.

4.3.1.1 Conservative FD formulas

Referring to the grid distribution of Figure 4.3.2, an alternative expression for the
first derivative can be written under the following form, instead of (4.3.6), based on
the function values at the mid-points (i £ 1/2):

Ujy1/2 — Ui—1)2
Xit1/2 — Xi—1/2

()i =

1 1
Xit1/2 — Xi—1/2 = E(Axi + Axj1) = 5(xi+1 —Xi—1) (4.3.8)

This formula is also said to be conservative.

We have mentioned in Chapter 1, the importance of the conservative form of the
conservation laws of Fluid Mechanics. This important property has also to be satisfied
atthe discrete level, that is after the discretization of the equations and the conservative
discretizations will be extensively discussed in general terms in the next Chapter 5,
in relation with the finite volume method. However, we wish to provide you already
here with a first glimpse at these essential properties.



174

Basic Discretization Techniques

Stated here in relation with structured grids, a difference formula is said to be
in conservative form, if it is written as the difference of two quantities defined on
opposite cell-faces, where in addition the cell-face quantities are not dependent on
the cell in which the face is considered.

Observe that equation (4.3.7), although having second order accuracy does not
satisfy this condition of conservative discretization.

Formula (4.3.8) is at best of first order accuracy on a non-uniform grid, since point
i is not at the center of the interval (i — 1/2,i+ 1/2) (see Problem P4.11). This is
readily seen from the Taylor expansions (4.3.2), leading to the formula:

Uiv1/2 —Ui—172  Axip)] — Ax;

(uy)i = (Uxx)i
Xit1/2 — Xi—1/2 4
AxX2 | — AXxiy1 Ax; + Ax?
(), (43.9)

Applying the approximation u; 1,2 = (4; + #;+1)/2 to equation (4.3.8), leads to the
following central difference formula:

Uit]1 — Ui—1

(ux)i = (4.3.10)

Xi+1 — Xi—1
Performing a Taylor expansion, the truncation error becomes

Uit — Ui— Axji1 — Ax;

() = ———— — — " (uw);
Xitl — Xi—1 2

AxZ | — Ax; 1Ax; + Ax?

- e () (43.11)

The same comments as stated in relation with formula (4.3.6) are valid here, namely
that this formula is only first order accurate on a general non-uniform grid, unless the
variation of the grid size is very smooth, namely (Ax; 41 — Ax;) ~ O(Ax?).

Observe also that the first term of the truncation error of formula (4.3.9) is lower
than the corresponding term of formula (4.3.11) showing that on an irregular grid
this formula will be slightly more accurate.

4.3.2 A General Formulation

The general expression (4.3.8) can be applied to generate a whole family of FD
formulas by defining a general interpolation rule for the cell-face values. The function
values at the cell ‘faces’ (i &= 1/2) are defined by a linear interpolation from the mesh
point values, following:

Uir172 = uj + oi(uiv1 — ui) + Biu; — ui—1) (4.3.12)

General conditions can be written for this interpolation formula to be at least second
order accurate (see Problem P.4.17). On a uniform mesh, the condition reduces to
o+ Bi=1/2.
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On a uniform mesh, «; =1/2, B;=0, corresponding to the ‘central’ choice
U172 = (u; +u;11)/2, reproduces the second order central difference (4.1.7); the
choice «; = B; =0 reproduces the first order backward difference (4.1.6), while
selecting «; =0, B; = 1/2 leads to the second order backward difference (4.1.16).

On the non-uniform mesh, the backward difference obtained with o; = 8; = 0 gives
the following expression, as an alternative to equation (4.3.5):

_ U — uj—]
(uy)i = E———T (4.3.13)

with the truncation error

U — Uj—| Axiy1 + Ax; Ax; Axiz 3
= i — — i+ — i + O(A
(it —xi-1)/2 2Ax; ()i b ()i + 6 ()i + O(AX7)

(4.3.14)

The first term on the right-hand side has a coefficient different from one on a non-
uniform grid, showing that this backward difference formula reduces to zero order
of accuracy on a general non-uniform grid and is therefore not acceptable.

Similarly, the option «; =0, B; =1/2, which gives the second order backward
difference (4.1.16) on a uniform mesh, leads to the formula:

Buj — 4wy +ui
Uy); = 4.3.15
(1) Ep——T ( )

with the truncation error

314,' . 4u,',1 +ui— _ 3Axi - Axi*l
(xit1 —xi-1)/2 AX; + Axiyy

(Ax; + Axi_l)2 — 4Axi2 5
— i + O(A 4.3.16
2(Ax; + Axitr) ()i +O(AX7)  ( )

(ux)i

Hence, this formula is also of zere order of accuracy on an arbitrary grid, although
it is second order on a uniform mesh. Again, this formula should not be used.

The main observation is that difference formulas generally can loose at least one
order of accuracy, and sometimes two, on general non-uniform grids.

In order to achieve second order accuracy on arbitrary grids, one has to consider
difference formulas that are formally of higher order on uniform grids, involving
additional mesh points.

Let us therefore consider a family of finite difference formulas for derivatives
at point i on a four point support, whereby point (i —2) is added to the basic set
(i—1,i,i+1). Hence, we look for an expression of the form:

. b . . d .
() = auj— + buj—1 + cu; + dujy (4.3.17)
(Ax; + Axip1)/2
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Applying the procedure of Section 4.1.2 based on the Taylor expansions (4.3.2), we
obtain the following conditions for a second order accurate formula:

a+b+c+d=0
dAxiy1 — bAx; — a(Ax; + Axi—1) = %(AxH_l + Ax;) (4.3.18)
dAxizH + bAX? + a(Ax; + Axi_1)* =0
or, defining the mesh ratio »; = Ax;41/Ax;
a+b+c+d=0

1 1
dri—b—a<l + ) — Lagm (43.19)
riel 2

1 2
Vi—l)

These relations define a one-parameter difference formula of second order accuracy
for the first derivative (see Problem P.4.13).

On a uniform mesh, the formulas are defined by the coefficients (a, b, c,d)=
(a, —3a—1/2,3a, —a+ 1/2) and the value a = 1/6 leads to the unique third order
formula on a uniform grid.

Observe that the three point formula with a =0 leads to the unique second order
scheme (4.3.7), which is not conservative, since it cannot be written under the
form (4.3.8).

The combination of second order and conservativity therefore requires an additional
degree of freedom, provided by the coefficient a. Assuming the interpolation relation
(4.3.12), formula (4.3.8) can be written under the form (4.3.17) and identifying the
coefficients leads to

a = Pi-1
b=—-(4p—ai-1+Bi-1)
c=1+p—ai1—a

d = o

Il
o

dr,-2+b+a(l+

(4.3.20)

This has to be seen as a set of equations for the unknown functions «(») and B(r), with
a; = a(r;) and B; = B(r;), since these interpolation coefficients are non-dimensional
functions of Ax; and Ax;41. Similarly, ;1 =a(r;—1) and B;—1 = B(ri—1). Eliminat-
ing b from the two last equations (4.3.19) leads to the following relation between
o; =o(r;) and i1 = B(ri-1):

oo b B+ i)
d= Ol(rz) - 2r; ri2_1 Vi(l + ri) (4321)

The terms depending on ;| have to be equal to a constant K, since 7; and r;_; are
independent variables. Hence, we have
r? 147 —2K

a+n "% Za+n

B(r) =K (4.3.22)
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The constant K is easily determined, for instance by combining the second equation
(4.3.19) with the second equation (4.3.20), leading to the unique value K = 1/2. This
choice of interpolation coefficients, namely

_ rl-z B 1
Bi = Blri) = 201+ r) a; =a(r) = 20+ 1) (4.3.23)
provides a second order, conservative formula for the first derivative on an arbitrary
mesh (See Problem P4.15).

It has been applied to the numerical simulation of two-dimensional nonlinear wave
solutions of the Euler and Navier—Stokes equations by Cain and Bush (1994), showing
excellent accuracy on stretched grids.

On a uniform mesh, this formula reduces to

Uipl + 3uj — Sui—1 +ui—y Ax? A3
- l4Axl : + ?(uxxx)i - T(uxxxx)i (4324)

(ux)i =

and is only second order accurate.

Note that on this fourth-point mesh, a formula with third order accuracy can be
obtained by adding this condition to the system (4.3.19) (see Problem P.4.16). This
formula is not conservative on a general grid and reduces to the following formula
on a uniform grid:

2us 3 — 6ui . Ax3
Uiyl + 3u; Ui—1 + uj—2 _ i(uxxxx)i (4.3.25)

()i = 6Ax 12

Two-dimensional extensions on non-uniform Cartesian grids are straightforward,
applying the ratios (4.3.23) in each direction separately.

Second derivatives

A three-point, central difference formula for the second derivative is obtained in the
simplest way by subtracting formulas (4.3.4) and (4.3.5), leading to

2 (ir1 —u)  (up —ui—1)
(urx)i = -
Axiv1 + Axi | Axiqg Ax;
Axip1 — Ax; Axi3+1 + AX? 84u
S T O )i — L (28 4326
+ 3 (uxxx)l 12(Ax1'+1 +A.Xl') ax4 . ( )

On a uniform grid, this formula reduces to the second order accurate finite difference
(4.1.18). However, as with equation (4.3.6), the presence of a truncation error pro-
portional to the difference of two consecutive mesh lengths reduces the accuracy to
first order, under similar conditions as mentioned above.

4.3.3 Cell-Centered Grids

Another popular choice for a finite volume discretization consists in selecting the
mesh points as the cell ‘faces’, which are then labeled at half-integer index values
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AX;_ 4 AX; AX; 4 4
® —e— o —® P x
i—1 ! i i+1 Vit 2

Xi—12  Xi+12

Figure 4.3.3  Finite volume subdivision of a non-uniform, one-dimensional mesh
point distribution. Cell-centered approach.

(i £1/2), and the function values are defined at the centers of the cells. This cell-
centered approach is represented in Figure 4.3.3 and is typical of a finite volume
approach, to be introduced more extensively in Chapter 5.

It is characterized by the property that the nodes i at which the function values are
defined are at the centers of the cells (i — 1/2,7+ 1/2), implying that the cell ‘faces’
i + 1/2 are not at the mid-points of the intervals (i, i 4 1).

Compare this mesh layout to the cell vertex of Figure 4.3.2 and observe the
differences in the definition of the cell sizes.

Hence, the approximation u; 1,2 = (u; +u;41)/2 is only first order accurate on a
non-uniform mesh, since combining the Taylor expansions of u; and ;4 around
point i, we have

1 1
Uip12 = E(ui +uir1) — Z(Axwrl — Axp)uy

i

1
- R(Axfﬂ 4+ 2Ax11Ax; — AxPug |+ O(AXY) (4.3.27)

1

The following approximation for u; 1 /2 is second order accurate on an arbitrary mesh,

Axjvru; + Axiui—p 1 3
Axit1 + Ax; - gAxiAxH_] Uy |; + O(AX7) (4.3.28)

Uir1/2 =

but again requires a weighted average, as in equation (4.3.7), which is difficult to
generalize to multidimensional grids.

As we will see more in detail in Chapter 5, in cell-centered finite volume methods,
all quantities and gradients are evaluated at cell faces, based on cell-center quantities.
On the other hand, on a mesh such as depicted in Figure 4.3.3, the derivative u,; is
calculated from formulas based on cell-face values. For instance, a straightforward
formula would be

Uit1/2 — Ui—1/2

i = 4.3.29
(t4x)i Ax; ( )
leading to
Uit1/2 — Ui—1/2 1
(u)y = “H2 T2 A () (4.3.30)

Ax, i 24
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based on the Taylor expansion of ;41,2 around point i. However, in practice, these
are not the values at hand during a computation. If the values of formula (4.3.27) are
used, a more straightforward formula would be

Uil — Uj—1

_ 4.3.31
(s Axi + (Axiy1 + Axi—1)/2 ¢ )
leading to
Ujr] — Uj—] 1
L — — Z(Axir1 — Axi_ .
()i Ax; + (Axier + Axi1))2 4( Xi+1 Xi— 1) (U )i
1
— ﬁ(AxiZ_H — Axj—1Axiy1 + Axi2 + Axi_1 Ax; + Axiz_l
+ AX; Axi 1) (taxr )i (4.3.32)

which is first order on the non-uniform mesh.

4.3.4 Guidelines for Non-uniform Grids

The errors due to the grid non-uniformity will be minimized for smoothly varying
grids, defined in such a way that the size variation between consecutive cells is of
second order in the grid size. That is, if

Axi11 — Ax; = O(Ax?) (4.3.33)

then formulas such as (4.3.6), (4.3.11) will be of second order accuracy, as on a
uniform grid.

However, a grid variation, such as defined by equation (4.3.1), will not satisfy this
condition, since this grid variation leads to, translated in the x-direction:

Axit1 — Ax; = Axi(r — 1) = O(Ax;) (4.3.34)

Hence, this will reduce the formulas, such as (4.3.6), (4.3.11) to first order accuracy.
However, as the coefficient is multiplied by (» — 1), which is generally a small number,
the error could remain small and acceptable. In addition, keep in mind that these errors
are proportional to some derivative, second or higher, of the function u. Therefore,
the impact of the errors due to the mesh non-uniformity will depend on the local
flow properties. In regions where the flow variation is smooth, this impact will be
reduced and could eventually be neglected. On the other hand, in regions with strong
variations, where the gradients are important these additional errors can become
critical and have to be severely controlled.
Additional guidelines can be stated here:

e Avoid discontinuities in grid size of adjacent cells.
e Always use laws for the grid size variation, defined by analytical, continuous
functions of the associated coordinate, to minimize the numerical error. For
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instance, clustering laws such as Ax; ;| =rAx; where r is a constant factor,

typically 1.1-2 are widely used.

e Pay a particular attention to the grid smoothness and grid density in regions of
strong flow variations, for instance around a leading edge of an airfoil profile,

or around stagnation points.

A4.4 GENERAL METHOD FOR FINITE DIFFERENCE FORMULAS

The following two sections are of interest for more advanced applications of finite
difference methods and cover a methodology for the generation of arbitrary FD for-
mulas with prescribed order (Section A4.4) and the generation of high order compact,

implicit finite difference formulas (Section A4.5).

They are marked by the letter A, for ‘Advanced’ and can be included or not in the

basic introductory course.

General procedures developed in order to generate finite difference formulas to
any order of accuracy and a general theory can be found in Hildebrand (1956). This

approach is based on the definition of the following difference operators:

Displacement operator £
Eu; = uj
Forward difference operator §T
§Tuj = i1 —u
Backward difference operator §~
8 Uy =uw; —ui g
Central difference operator §
Sui = uit12 — ui—12

Central difference operator &

- 1
Su; = E(ui-H —ui_1)

Averaging operator p

1
uu; = E(”i+l/2 +ui-12)

(4.4.12)

(4.4.1b)

(4.4.1¢)

(4.4.1d)

(4.4.1¢)

(4.4.1f)
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Differential operator D

ou
Du=u, = ™ (44.1g)
X

From these definitions some obvious relations can be defined between these operators,
such as

st =E—1 (4.4.2)

s~ =1-—E"! (4.4.3)
where the inverse displacement operator E is introduced, defined by

E~ = ui (4.4.4)
This leads to the following relations

s~ =E 5t (4.4.5)
and

st =85t =86t -5 =67 (4.4.6)
With the general definition, n being positive or negative:

E"u; = ujyy (4.4.7)

we also have

§=EYV? _E71/2 (4.4.8)

S:%@-E*) (4.4.9)
and

;u:%ﬂﬂ+E4ﬂ) (4.4.10)

Any of the above difference operators taken to a given power #, is interpreted as n
repeated actions of this operator. For instance:

st =stst = E2 —2E +1 (4.4.11)

—(E—-1P=E—3E*+3E— 4.
st3 1P =E—3E2+3E—-1 44.12

Generation of Difference Formulas for First Derivatives

The key to the operator technique for generating finite difference formulas lies in the
relation between the derivative operator D and the finite displacement operator E.
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A4.411

This relation is obtained from the Taylor expansion:

sz Ax3
u(x + Ax) = u(x) + Ax ux(x) + um(x) + ux,cx(x) 4+ (4.4.13)

or in operator form:

AxD)?  (AxD)?
Eu(x) = (1 + AxD+( ; ) + ( ; ) +~->u(x) (4.4.14)
This last relation can be written formally as
Eu(x) = e*Pu(x) (4.4.15)
and therefore one has symbolically
E =¢eMP (4.4.16)

This relation has to be interpreted as giving identical results when acting on the
exponential function e** and on any polynomial of degree n. In this latter case, the
expansion on the right-hand side has only n terms and therefore all the expressions
to be defined in the following are exact up to n terms for polynomials of degree n.
The basic operation is then to use equation (4.4.16) in the inverse way, leading to

AxD =InE (4.4.17)

Forward differences

Formulas for forward differences are obtained by introducing the relation (4.4.3)
between E and the forward operator §*. We obtain after a formal development of the
In function:

AxD = InE=In(1+46")

§1t2 §13 §t4
2 * 3 4 * ( )

The order of accuracy of the approximation increases with the number of terms kept in
the right-hand side. The first neglected term gives the fruncation error. For instance,
keeping the first term only, leads to the first order formula (4.1.5) and a truncation

error equal to (Ax uy,/2). If the first two terms are considered, we obtain the second
order formula (4.1.17) with the truncation error (Axu,/3):

—3u; +4uip —u; Ax?
(ux)i = ! ZAH);I A + Tuxxx (4.4.19)

Hence, this relation leads to the definition of various forward finite difference formulas
for the first derivative with increasing order of accuracy. As the forward difference
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Ad4.4.1.2

A4.413

operator can be written as 87 = Ax u, + O(Ax?), the first neglected operator 517 is
of order n showing that the associated truncation error is O(Ax"~1).

Backward differences

Similarly, backward difference formulas can be obtained with increasing order of
accuracy, by application of the relation (4.4.3):

AxD =InE=—-In(l1-§6)
8—2 5_3 5_4
_e e 4420
+ ottt (4.4.20)

To second order accuracy we have

3up —dui_y +ui—y  AX2
(uy); = Du; = — 2le S 5t (4.4.21)

Central differences
Central difference formulas are obtained from equation (4.4.8)
Suj = w12 — w12 = (EV? — E7' )y

and therefore
AxD
§ = eMD/2 _ g=AD/2 _ i |y (%) (4.4.22)

which, through inversion, leads to

s 1 (8\ 1.3 [5)°
AxD = 2sinh™'8)2=2|-—— (=) + 3
2 2-3\2 2.4.5\2

1-3.5 (& 7+
2.4.6-7\2

=35 83+385 557+ (4.4.23)
- 24 640 7168 o

This formula generates a family of central difference approximations to the first
order derivative (u,); based on the values of the function u at half-integer mesh point
locations. By keeping only the first term, we obtain, with second order accuracy

Uit1/2 — Ui-1/2 Ax?

(uy)i = Ax j Uxxx

(4.4.24)
Keeping the first two terms, we obtain a fourth order accurate approximation

—uiv32 + 2Tuir172 — 2Tui—1 2 + ui—32 . iAxﬁiu (4.425)
24 Ax 640 x>

(uy)i =
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To derive central differences involving only integer mesh points, we could apply the
above procedure to the operator §. From equation (4.4.9) we have

o1 1
b= (E— ETh= E(eA’fD — ¢~ 2Dy — §in h(AxD) (4.4.26)

and therefore, in function of 8,
AxD = sin h™'§
3 _
= 5—— + 4. (4.4.27)

This formula can be used to replace equation (4.4.23) for the central difference at point
i. However, although the first term is the second order central difference approximation
(4.1.7), the next term leads to a fourth order formula for (uy); involving the four points
i—3,i—1,i+1, i+ 3. This is of no interest for numerical computations since we
would expect a fourth order formula for (u,); to involve the points i —2,i —1,i+ 1,
i + 2. This can be obtained from the identity:

2

5 5
W=+ (4.4.28)

After multiplication of equation (4.4.23) by

| = 1+‘S2 o 152+384 5 (4.4.29)
K 4 K 8 T 128 1024 -

we obtain the relation
1, 1222
AxD = pu|6§—=6"+—68 —---

(4.4.30)

I
(=2
N
—_
|
| <
[\S)
+
‘N
|38
(o2
N
|
)
[\ S]
w
[ ]
;9
N
_l’_
SN———"

Hence, we obtain the following second and fourth order accurate central difference
approximations to the derivative (u,);, with integer mesh point values:

Uir] — Ui Ax?
()i = = = 4.4.31)
and
—u; Sui1 — Sui_ . Ax? 9°
() = Ui + ujqg ui—1 +uio X u (4.4.32)

2Ax 30 xS

A4.4.2 Higher Order Derivatives

Applying the operator technique, an unlimited number of finite difference formu-
las can be applied to obtain second and higher order derivatives. From equation
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(4.4.18) we have the one-sided, forward difference formula, see for instance
Ames (1977):

"u 1 +

_ st 1_ﬁ(s+_+_n(3n—i-5)8+2_ n(n+2)(n+3)8+3+.“
Ax" 2 24 48

(4.4.33)

In terms of the backward difference operator §~, we have

0"u 1 _
<axn>i = —qmtnd =9 i
1 72 53 5t !

= 5 — R S . .
Axn<+2+3+4+>"’
5" n._ n@Bn+5) _, nn+2)n+3) 4

= 1+=5 8 8 N
Ax" [ Tt + 48 R

(4.4.34)

Central difference formulas for higher order derivatives can also be obtained,
through

2 n
D'u; = <—sin h_18/2> u;
Ax

LTs 53+355 > 574 "
A 24 T 620° T 7168 i

5 [1 24 22+ 5m)st

Ax" 24 5760
n(5 n=1 m-=0Dn-2)\ ¢
-——=1=z 8+ |uy (4.4
15 (7+ 5 + 81 + u; (4.4.35)

For n even, this equation generates difference formulas with the function values at
the integer mesh points. For n uneven, the difference formulas involve points at half-
integer mesh points. To involve only points at integer values of i for n uneven we
define, using equation (4.4.28):

2 n
D'y; = S 72 (— sin h’18/2> u;
[1+82/4] Ax

_ Msn[l_n+32 (5n+27n+5) 4 ]u,

(4.4.36)
Ax" 24 5760
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Second order derivative

For instance, second order derivative formulas are

I (o 3 1oy S5
()i = 7 §24+6873 125 + 8’3 + ) (4.4.37)
1 11 5
()i = 5 (5*2 87+ §5+4 - 63” +-- ) Ui (4.4.38)
(ttxy) ! 8§ i + © +- (4.4.39)
ey = — (2 ° 4.
AR 12790 560
w 584 259
(i = 12 (82 T %56 oo Jui (4.4.40)

These equations define four families of difference operators for the second derivative,
to various orders of accuracy. By maintaining only the first term, we obtain the
following difference formulas:

Forward difference — first order accurate
1
(tx)i = E(”H—Z — 2uiq1 + Ui) — AXry (4441
Backward difference — first order accurate
1
(txr)i = Aixz(uFZ —2ui1 + ;) + Axttgey (4.4.42)

Central difference — integer points — second order accurate

(e = g1 = 20+ y-1) — P (4.4.43)
Uxx )i = 2 Ui+l — &Uj T Uj—1 12 o A

Central difference — half integer mesh points — second order accurate

1 5 o*u
()i = 2(u1+3/2 — Ujp1/2 — Ui—1/2 + Ui—3/2) — ﬁAx P (4.4.44)

With the exception of the last one, these difference approximations for the second
derivative involve three mesh points like the first derivatives. The one-sided difference
formulas are only first order accurate, while the central differences always lead to a
higher order of accuracy.

By keeping the two first terms of the above formulas, we obtain difference formulas
with a higher order of accuracy:

Forward difference — second order accurate

1 1, (du
()i = Tﬁ(zui — Sujp1 +duipr — uip3) + EAX s (4.4.45)
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A4.4.2.2

Backward difference — second order accurate

1 11, (%
(Uxx)i = E(zui = Suj—y +4uip — uj—3) — EAX F (4.4.46)
Central difference — integer points — fourth order accurate
1 Ax* (30u
(txx)i = W(—MHZ + 16w — 30u; + 16w —u;—2) + 90 \ o6
(4.4.47)
Central difference — half-integer mesh points — fourth order accurate
1
(txr)i = m(—5ui+5/2 + 391372 — 34uir12 — 34ui-12
+39 S5 )+ 20 ant (L (4.4.48)
ui—372 — Suj— — A" | — 4.
i—3/2 i=52) % 555 P

This last formula is of little practical use since it requires six mesh points to obtain
a fourth order accurate approximation to the second derivative at point i, while the
previous formula (4.4.47) requires only four mesh points.

A more complex operator, often occurring in second order differential problems is
dx[k(x)dxu]. A central difference formula of second order accuracy with three mesh
points is given by

ar 9 1
k() — |u; = — 8" (k11287 )u; + O(Ax?) (4.4.49)
| ox | Ax?

ax

which takes the explicit form

T a
o | K003 |1 = mplhiealeier = ) = kici 2 —ui-1)] + O(Ax%)
(4.4.50)
An equivalent formula is obtained by inverting the forward and backward
a a 1 _ " 2
P k(x)a U = A7x28 (k141728 Ju; + O(Ax”) (4.4.51)

leading to the same expression (4.4.50).

Third order derivatives

Approximations for third derivatives are obtained from the above general expressions.
To the lowest orders of accuracy one has the following difference formulas:

Forward difference

Bu
<ax3>l = (uxxx)i

1 Ax [ du
= E(“i+3 = 3uito + 3uipr —up) — ER ™ (4.4.52)
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or with the second order accuracy

1 21, (Pu
(txxn)i = 7= (=3ujpq + 14u; 3 — 24u; 15 + 18u; 1 — Su;) + — Ax
2Ax3 12

s
(4.4.53)
Backward difference
1 Ax [ 3*u
(thxxx)i = Aix:;(ul —3ui—1 +3u2 —ui—3) + 7 w (4.4.54)

or with second order accuracy

1 21, (Pu
(thxx)i = m(ﬁti — 18u;_1 +24u;_p — 14u;_3 + 3u;_4) — EAX —

x>
(4.4.55)
Central difference — half-integer points
1 Ax2 [ 3Pu
(thrx)i = ﬁ(uws/z — 3uir12 + 3ui—1y2 — ui—3)2) — < \om (4.4.56)

This is a second order accurate approximation to the third derivative, and a fourth
order accuracy is obtained from the following formula:

1
(thxx)i = m(_UHS/Z + 13uit3/2 — 34uiv12 + 34ui—12

13372 + trs2) + — Ax® Gl (4.4.57)
=32 TSI T 950 7 \ oy -

Central difference — integer mesh point

1 Ax? [ u
(Uxx)i = m(uwz —2uipy + 2u; 1 —u;2) — 2 35 (4.4.58)

or with fourth order accuracy

(thxxx)i = (—tig3 + 8o — w1 + 1301 — 8wy + 1;—3)

8AX3

7 8u
+ mm‘* (y> (4.4.59)
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A4.4.2.3 Fourth order derivatives

To the lowest order of accuracy, we have the following approximations:

Forward difference — first order accurate

a*u ( )
“2) = )
ax 4 ; XXXX )1

1 u
= @(uiﬂ — 43 + Oujpo — Auiy + u;) — 2Ax <875) (4.4.60)

Backward difference — first order accurate

S

¥u 1 Pu
) = opa (Ui = Aoy + Oy — Auis +uig) +20x (o5 | (44.61)

Central difference — second order accurate

1 Ax2 [ 80u
(thxxx)i = @(“i-&-z —duipy + 6u; —Au; +ui2) + 5 o0

) (4.4.62)
Obtaining these formulas is left as an exercise to the reader (see Problems
P4.18-P4.21).

A4.5 IMPLICIT FINITE DIFFERENCE FORMULAS

Implicit formulas are defined as expressions where derivatives at different mesh points
appear simultaneously. Their essential advantage comes from the high order of accu-
racy that is generated when derivatives at different mesh points are related to each
other. The price to be paid is that we generate an algebraic system for the approxi-
mated derivatives, which cannot be written in an explicit way. The above expressions
can be used to generate these high order implicit formulas for the derivative operators
in the following way.

A4.5.1 General Approach

For instance, equation (4.4.30) gives, with a fourth order accuracy

2
AxD = us <1 - %) +0(AXY) 4.5.1)

or by a formal operation, to the same order of accuracy

ué

AxD = ——
14 82/6

+ O(AX%) (4.5.2)
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This formula is a rational fraction or PADE differencing approximation, Kopal (1961).

The interpretation of these two last formulas are quite distinct from each other.
Equation (4.5.1), applied to u; leads to the fourth order formula (4.4.32), while
equation (4.5.2) is to be interpreted after multiplication of both sides by the operator
(14 82/6):
Uil — Uj—1 4

T Ax +0(Ax™) (4.5.3)

The left-hand side has an implicit structure and this formula has the important prop-
erty of involving only three spatial points while being of the same fourth order as
equation (4.4.32) which requires five mesh points. These schemes are called some-
times Hermitian schemes and can also be obtained from a finite element formulation
(see Chapter 5).

Similar procedures can be applied to generate other implicit formulas; for instance
equation (4.4.18) leads to

(1482/6)Du; = 1140+ 1] =

1 1
AxD = st — 55” +O(AXY) = §F (1 - §5+> + O(AXY)

8+
=—F+ O(AxY) (4.5.4)
1+ 6%

After multiplication by (1 4 §T)/2, we obtain the two point implicit relation, of second
order accuracy

%[(ux)i + ()ip1] = ”%_”’ +0(Ax?) (4.5.5)
X

Formulas such as (4.5.3) or (4.5.5) do not allow the explicit determination of the
numerical approximations to the derivatives (uy);. Instead these formulas have to be
written for all the mesh points and solved simultaneously as an algebraic system of
equations for the unknowns (uy);, i=1,...,N.

For instance, the fourth order implicit approximation (4.5.3) for (u,); will be
obtained from the solution of the tridiagonal system:

(ux)i72
1 41 (tx)i—1 3 | i~ Ui
1 4 1 (uy);i | = Ax Uir] — Ui—] (4.5.6)
1 4 1 (tx)i+1 . Uit — Ui
(tx)i+2

while equation (4.5.5) leads to a bidiagonal system:

(uxji—Z

11 (tx)i—1 o | Ui — Uiy
L1 ()i | = — | g1 — (4.5.7)
Ax
11 (tx)i+1 Uitd — Uiy

(t4x)it2
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As a consequence, the numerical value of (u,); obtained as solution of the above
systems, is influenced by all the mesh point values u;.

This explains why these formulas are of higher order of accuracy than the corre-
sponding explicit formulas involving the same number of mesh points. When applied
to practical flow problems, the function values and the derivatives are considered as
unknowns. They are obtained as solutions of an algebraic system formed by adding
the basic equations to be solved to the above implicit relations.

Along the same lines, we obtain implicit formulas for second order derivatives with
a higher order of accuracy and a number of mesh point values limited to two or three.
From equation (4.4.39), we have, to fourth order accuracy

) 1521 il +0O(AxY
Uxx)i = —— - T4 i X
Ax2 2)"
_ L u + O(AXY (4.5.8)
~ A2 (1+84/12) o a

Multiplying formally by (1 +82/12) we obtain the implicit, compact expression for
the second order derivative

1
(LM%umm»:Kpﬁm+omﬁ) (4.5.92)
or

1 1
T L) + 10Guc0); + (teo)iot] = 5 (i — 205 + i) + O(Ax%)
(4.5.9b)

Here again a tridiagonal system is to be solved in order to calculate (u,); from the
mesh point values u;.

There is no way of obtaining an implicit relation for the second derivatives with
only values at the two mesh points i and i 4 1, without involving also first derivative
values (Hirsh, 1975, 1983).

A4.5.2 General Derivation of Implicit Finite Difference Formula’s for First and
Second Derivatives

Implicit finite difference relations for first and second derivatives have been derived
by various methods and given a variety of names. Many formulas can be found
in Collatz (1966), under the name of Mehrstellen method or Hermitian method
by analogy with Hermitian finite elements. We have already mentioned the name
of Pade approximations and recently a large number of applications to the solu-
tion of fluid-mechanical equations have been developed by Krause (1971), Hirsh
(1975), Lele (1992) under the name of compact methods; Rubin and Graves (1975),
Rubin and Khosla (1977) under the name of spline methods; Adam (1975, 1977),
Ciment and Leventhal (1975), Leventhal (1980) as (operator) compact implicit (OCI)
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methods. However, following Peyret (1978) — see also Peyret and Taylor (1982) —
all the implicit formulas can be derived in a systematic way from a Taylor series
expansion.

With a limitation to three-point expressions, the general form of an implicit finite
difference relation between a function and its first two derivatives would be

ayuiyl +aoui +a—ui—1 + by (ux)iy1 + bo(ux)i + b—(ux)i-1

4.5.10
+ e (Unx)it1 + co(txx)i + c—(Uxx)i1 =0 ( )

Developing all the variables in a Taylor series about point i, we have the following
expansion, for equal mesh spacing

Ax? AX3 Ax* (3% AX> [ u
uir1 = u; £ Ax(uy); + T(uxx)i + T(uxxx)i + H e ii 5 o5 i
Ax® [ 8%u Ax7 (9Tu
2 (XYL 22 (28
6! \ x0 ), 70\ o7 ), 8l

2 3/t u
(x)i+1 = (uy)i & Ax(uy)i + o (”W)’ Ag (a u> 24 (a )

oax?t x> );

Ax> [ 3%u +Ax6 x! /8%y
50\ ax6 ), 6! 8x7 58 (4.5.12)

()ie1 = ()i £ AX( )‘+Ax2 Ou) AP (P A
Uxx )i+l = (Uxx)i XM Uxxx )i 2 x4 . 6 xS i 24 ox6 i

AX> (8u AxS (8%u
4513
51 <ax7>,.+ 6! <8x8)l-+ (4.5.13)

When introduced in the implicit relation (4.5.10), one can request the coefficients
up to the third order derivative of the truncation error to vanish, in order to
obtain at least second order accuracy, for the second derivatives. This leads to the
conditions

4.5.11)

ar+ap+a-=0
Ax(ay —a-)+by+bo+b_=0

Ax?
—(a+ +a )+ Ax(by —b_)+cy+co+c-=0

Ax3 Ax?
—(a+—a )+—(b++b Y+ Ax(cy —c_) =0 (4.5.14)
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from which one can choose to eliminate a, ag, a—, and by, for instance, (other
choices are obviously possible, see Problem P.4.22),

1 2
ay = E |:—5b+ — b_ + 5(20_ — 4C+ — C()):I
2 1
a = b+—b_+—(c++co+c_)
| (4.5.15)
a- == |:b+ +5b_ + —(20+ —4c_ — co)]
b() = 2(b+ + b_) + 7(C+ — C_) =0
Ax
and the truncation error R reduces to
R A° 2by — b )+ ( fe)— 2o Pu
TR * e at
A 85
;f 2(b++b )+—(c+—c )]
LA 4(b b)+ ( Feyo | 2
ol |TF e ax®
Ax© 87
+7 4(b++b )+7(C+—C)
AxT [ 6bs — b )+ s 4oy — 2 Pu (4.5.16)
gr | T T A T T A 8 >

Hence, one has a four-parameter family of implicit relations (one parameter may
always be set arbitrarily to one since equation (4.5.10) is homogeneous). These param-
eters can be selected on the basis of various conditions, according to the number of
derivatives and mesh points one wishes to maintain in the implicit relation or by impos-
ing a minimum order of accuracy. For instance, the second order relation (4.5.7) is
obtained with b =b_ = by =0 and by selecting ¢y =c_ =1, ¢y = 10.

As can be seen from the expression of the truncation error, the highest order of
accuracy that can be achieved is six. This is obtained by imposing the coefficients of
the three first terms in R to vanish. This gives the relations:

1
by = - Bey+e)

1
b = —(c+ +8c2) 4.5.17)
Ax

co = —4(cy +co)
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Inserted into the above formulas, a one-parameter family of implicit relations is
obtained between the function u and its first two derivatives, with « =cy /c_,

3 24 3
m(l?) + 30()ui+1 — Aixz(l + ot)ui + m(3 + 130{)“[71

B @i — 51— e+ (1 + B
+ (uXX)i+1 - 4(1 + Ol)(uxx)i + Ol(u)oc)i—l =0 (4518)

with the truncation error

8AX? Tu  Ax® Bu
The unique, implicit relation of order six, is obtained from o =1
24 9
R(uiﬂ = 2u; +ui—1) — E[(ux)i-ﬁ-l — (ux)i-1]
+ (uXX)i+1 - 8(uxx)i + (uxx)ifl =0 (4520)
with a truncation error
2 (u

Implicit relations with first derivatives only, are obtained from c; =co =c_ =0, and
can therefore be at most fourth order accurate. From equations (4.5.15) and (4.5.16)
we obtain the one parameter family, with 8=5b_/b

1 2 1
E(_S — Buit1 + E(] = Bu; + E(l + 5B)ui—1
+ (ux)i+1 + 2(1 = B)(ux)i + B(uy)i-1 =0 (4.5.22)

with a truncation error

Ax3 Su
5

F*u Ax? a
R=—0_0A-f—+——>0+P— 452
12 (1= ox* 60 (1+F6) ox (4.5.23)

For 8 =1, one obtains the unique fourth order relation (4.5.3). For other choices of
B, the formula is only third order accurate.

Two-point implicit difference formulas

The most general two-point relation, with at least second order accuracy for the second
derivatives, is obtained from a_ = b_ = c_ = 0. We obtain the one-parameter family
of relations, from (4.514) with y = by /(AxaL)

1 1+vy %
@(”i —Ui+1) + ?(”x)i - B(uX)M

1
+ld+ 3Y)uxe)it1 + (2 + 3y)(ux)i] = 0 (4.5.24)
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with the truncation error

R— Ax? n 1\ 8*u n Ax* n 7\ u (4.5.25)
"\ 2) et T 2 V15 e >
For y = —1/2, we have the unique third order accurate relation,
1 1 1
E(uiﬂ —u;) — m[(ux)iﬂ + (ux)ir1] + E[(uxx)iJrl — (uxx)i] =0
(4.5.26)

with the truncation error

Ax3 85u
R = ~ 250 55 (4.5.27)

Many other formulas can be derived, according to the points or (and) the derivatives
we wish to isolate.

CONCLUSIONS AND MAIN TOPICS TO REMEMBER

This chapter four has introduced you to the basis of numerical discretization, namely
the finite difference method. Although it is only applicable to structured grids, it
remains the reference to all numerical analysis steps.

The main topics to remember are the following:

e The Taylor expansion for continuous functions is the key to the evaluation of the
order of accuracy of FD formulas.

e For any derivative, we always have an infinite number of possible FD formulas,
depending on the number of mesh points we decide to involve in the formula
and on the expected order of accuracy, which can be arbitrarily high.

e Depending on the position of the points involved in the FD formula for point 7,
we distinguish between backward, forward, central or mixed FD formulas.

e Although the order of accuracy of an FD formula is uniquely defined by the
related Taylor expansion, it is very important to remember that the effective
order of the same formula can be different if interpreted as an approximation
in the mesh point or at the mid-cell point. For instance, a first order backward
formula for a first derivative at point i, will provide a second order approximation
of the same first derivative at the mid-point (i — 1/2).

e The extension to two-dimensional partial derivatives, as described in Section 4.2,
should require your careful attention, as the number of possible discretizations
increases with the number of space dimensions. An interesting example is given
by the FD formula for the Laplace equation, which appears currently in CFD.
Observe the simplicity of these formulas.

e Section 4.3 on FD formulas for non-uniform grids is of utmost importance, as
most of the CFD applications are performed on non-uniform grids. You learn in
this section, how and why a non-negligible loss of accuracy of any FD formula
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can appear with ‘brutal’ changes of cell sizes. This loss of accuracy is often
limited to one order, but could also be more severe for strong discontinuous grid
changes or for inappropriate formulas.

e The important recommendation for avoiding a significant loss of accuracy on
non-uniform grids is to avoid discontinuous variations of cell size and to ensure
that the grid variations are defined by smooth analytical functions, such as a
power law with a fixed cell size ratio.

e Take notice of the methodologies developed in Sections A4.4 and A4.5, as it
provides a general framework for the derivation of FD formulas of any order of
accuracy, for any derivative of order », on a uniform grid.
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